mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
0
vllm_npu/torchair/models/__init__.py
Normal file
0
vllm_npu/torchair/models/__init__.py
Normal file
363
vllm_npu/torchair/models/qwen2.py
Normal file
363
vllm_npu/torchair/models/qwen2.py
Normal file
@@ -0,0 +1,363 @@
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2023 The vLLM team.
|
||||
#
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
import vllm
|
||||
import vllm.envs as envs
|
||||
from torch import nn
|
||||
from transformers import Qwen2Config
|
||||
from vllm.attention import AttentionMetadata, AttentionType
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, VllmConfig
|
||||
from vllm.distributed import (get_pp_group, tensor_model_parallel_all_gather,
|
||||
tensor_model_parallel_reduce_scatter)
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
|
||||
from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
|
||||
from vllm.model_executor.models.qwen2 import Qwen2Attention # noqa: F401
|
||||
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM # noqa: F401
|
||||
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Model
|
||||
from vllm.model_executor.models.utils import (AutoWeightsLoader,
|
||||
PPMissingLayer, maybe_prefix)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.attention.attention_v1 import AscendAttentionState
|
||||
|
||||
|
||||
def all_gather_and_maybe_unpad(
|
||||
hidden_states: torch.Tensor,
|
||||
pad_size: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = tensor_model_parallel_all_gather(hidden_states, 0)
|
||||
if pad_size > 0:
|
||||
return hidden_states[:-pad_size, :]
|
||||
return hidden_states
|
||||
|
||||
|
||||
def maybe_pad_and_reduce_scatter(
|
||||
hidden_states: torch.Tensor,
|
||||
pad_size: int,
|
||||
) -> torch.Tensor:
|
||||
if pad_size > 0:
|
||||
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_size))
|
||||
hidden_states = tensor_model_parallel_reduce_scatter(hidden_states, 0)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen2Attention(Qwen2Attention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
max_position: int = 4096 * 32,
|
||||
rope_theta: float = 10000,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
rope_scaling: Optional[tuple] = None,
|
||||
prefix: str = "",
|
||||
attn_type: str = AttentionType.DECODER,
|
||||
dual_chunk_attention_config: Optional[dict[str, Any]] = None,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
hidden_size=hidden_size,
|
||||
num_heads=num_heads,
|
||||
num_kv_heads=num_kv_heads,
|
||||
max_position=max_position,
|
||||
rope_theta=rope_theta,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
rope_scaling=rope_scaling,
|
||||
prefix=prefix,
|
||||
attn_type=attn_type,
|
||||
dual_chunk_attention_config=dual_chunk_attention_config)
|
||||
ascend_config = get_ascend_config()
|
||||
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
||||
if self.torchair_graph_enabled and attn_metadata is not None and attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
|
||||
q, k = self.rotary_emb(positions,
|
||||
q,
|
||||
k,
|
||||
is_prefill=False,
|
||||
is_qwen_torchair=True)
|
||||
forward_kwargs = {}
|
||||
if envs.VLLM_USE_V1:
|
||||
output_shape = q.shape
|
||||
output = torch.empty(output_shape,
|
||||
dtype=q.dtype,
|
||||
device=q.device)
|
||||
forward_kwargs['output'] = output
|
||||
|
||||
attn_output = self.attn.impl.forward(self.attn,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
trace_flag=False,
|
||||
**forward_kwargs)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
else:
|
||||
if type(self.rotary_emb) is RotaryEmbedding:
|
||||
q, k = self.rotary_emb(positions, q, k, is_qwen_torchair=True)
|
||||
else:
|
||||
q, k = self.rotary_emb(positions, q, k)
|
||||
attn_output = self.attn(q, k, v)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class CustomQwen2DecoderLayer(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: Qwen2Config,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
# Requires transformers > 4.32.0
|
||||
rope_theta = getattr(config, "rope_theta", 1000000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
dual_chunk_attention_config = getattr(config,
|
||||
"dual_chunk_attention_config",
|
||||
None)
|
||||
|
||||
# By default, Qwen2 uses causal attention as it is a decoder-only model.
|
||||
# You can override the HF config with `is_causal=False` to enable
|
||||
# bidirectional attention, which is used in some embedding models
|
||||
# (e.g. Alibaba-NLP/gte-Qwen2-7B-instruct)
|
||||
if getattr(config, "is_causal", True):
|
||||
attn_type = AttentionType.DECODER
|
||||
else:
|
||||
attn_type = AttentionType.ENCODER_ONLY
|
||||
|
||||
self.self_attn = CustomQwen2Attention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
max_position=config.max_position_embeddings,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
rope_scaling=rope_scaling,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
attn_type=attn_type,
|
||||
dual_chunk_attention_config=dual_chunk_attention_config,
|
||||
)
|
||||
self.mlp = Qwen2MLP(
|
||||
hidden_size=self.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp",
|
||||
)
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
|
||||
hidden_states = self.self_attn(positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile(
|
||||
dynamic_arg_dims={
|
||||
"input_ids": 0,
|
||||
# positions is of shape (3, seq_len) if mrope is enabled for qwen2-vl,
|
||||
# otherwise (seq_len, ).
|
||||
"positions": -1,
|
||||
"intermediate_tensors": 0,
|
||||
"inputs_embeds": 0,
|
||||
})
|
||||
class CustomQwen2Model(Qwen2Model):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
vllm_config: VllmConfig,
|
||||
prefix: str = "",
|
||||
decoder_layer_type: type[nn.Module] = CustomQwen2DecoderLayer):
|
||||
super().__init__(vllm_config=vllm_config,
|
||||
prefix=prefix,
|
||||
decoder_layer_type=decoder_layer_type)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
kv_cache = kv_caches[i - self.start_layer] \
|
||||
if kv_caches is not None else None
|
||||
hidden_states, residual = layer(positions,
|
||||
hidden_states,
|
||||
residual,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata)
|
||||
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
|
||||
# add `CustomQwen2Model` to init self.model
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
super().__init__()
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
lora_config = vllm_config.lora_config
|
||||
|
||||
self.config = config
|
||||
self.lora_config = lora_config
|
||||
|
||||
self.quant_config = quant_config
|
||||
self.model = CustomQwen2Model(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
if get_pp_group().is_last_rank:
|
||||
if config.tie_word_embeddings:
|
||||
self.lm_head = self.model.embed_tokens
|
||||
else:
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix, "lm_head"))
|
||||
else:
|
||||
self.lm_head = PPMissingLayer()
|
||||
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
||||
return self.model.get_input_embeddings(input_ids)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds)
|
||||
return hidden_states
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
sampling_metadata=None, # type: ignore
|
||||
) -> Optional[torch.Tensor]:
|
||||
logits = self.logits_processor(self.lm_head, hidden_states,
|
||||
sampling_metadata)
|
||||
return logits
|
||||
|
||||
def load_weights(self, weights: Iterable[tuple[str,
|
||||
torch.Tensor]]) -> set[str]:
|
||||
loader = AutoWeightsLoader(
|
||||
self,
|
||||
skip_prefixes=(["lm_head."]
|
||||
if self.config.tie_word_embeddings else None),
|
||||
)
|
||||
return loader.load_weights(weights)
|
||||
|
||||
|
||||
vllm.model_executor.models.qwen2.Qwen2ForCausalLM = CustomQwen2ForCausalLM
|
||||
537
vllm_npu/torchair/models/qwen3_moe.py
Normal file
537
vllm_npu/torchair/models/qwen3_moe.py
Normal file
@@ -0,0 +1,537 @@
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2024 The Qwen team.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# Adapted from vllm/model_executor/models/qwen3_moe.py
|
||||
# This file is a part of the vllm-ascend project.
|
||||
from typing import Any, List, Optional, Union
|
||||
|
||||
import torch
|
||||
import vllm.envs as envs
|
||||
from torch import nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.attention import Attention, AttentionMetadata
|
||||
from vllm.compilation.decorators import support_torch_compile
|
||||
from vllm.config import CacheConfig, CompilationLevel, VllmConfig
|
||||
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
||||
from vllm.distributed.parallel_state import (get_dp_group, get_ep_group,
|
||||
get_tp_group)
|
||||
from vllm.forward_context import get_forward_context
|
||||
from vllm.model_executor.layers.fused_moe.layer import FusedMoE
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.linear import (QKVParallelLinear,
|
||||
ReplicatedLinear,
|
||||
RowParallelLinear)
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.rotary_embedding import get_rope
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.models.interfaces import (MixtureOfExperts,
|
||||
SupportsLoRA, SupportsPP)
|
||||
from vllm.model_executor.models.qwen3_moe import (Qwen3MoeAttention,
|
||||
Qwen3MoeDecoderLayer,
|
||||
Qwen3MoeForCausalLM,
|
||||
Qwen3MoeMLP, Qwen3MoeModel,
|
||||
Qwen3MoeSparseMoeBlock)
|
||||
from vllm.model_executor.models.utils import (
|
||||
PPMissingLayer, extract_layer_index,
|
||||
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.attention.attention_v1 import AscendAttentionState
|
||||
from vllm_npu.torchair.ops.sequence_parallel import (MetadataForPadding,
|
||||
init_metadata_for_sp)
|
||||
from vllm_npu.torchair.ops.torchair_fused_moe import TorchairAscendFusedMoE
|
||||
|
||||
|
||||
class CustomSparseMoeBlock(Qwen3MoeSparseMoeBlock):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
):
|
||||
nn.Module.__init__(self)
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
if self.tp_size > config.num_experts:
|
||||
raise ValueError(
|
||||
f"Tensor parallel size {self.tp_size} is greater than "
|
||||
f"the number of experts {config.num_experts}.")
|
||||
|
||||
self.gate = ReplicatedLinear(
|
||||
config.hidden_size,
|
||||
config.num_experts,
|
||||
bias=False,
|
||||
quant_config=None,
|
||||
prefix=f"{prefix}.gate",
|
||||
)
|
||||
|
||||
self.experts = TorchairAscendFusedMoE(
|
||||
num_experts=config.num_experts,
|
||||
top_k=config.num_experts_per_tok,
|
||||
hidden_size=config.hidden_size,
|
||||
intermediate_size=config.moe_intermediate_size,
|
||||
reduce_results=False,
|
||||
renormalize=config.norm_topk_prob,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.experts",
|
||||
)
|
||||
|
||||
self.top_k = config.num_experts_per_tok
|
||||
|
||||
self.dp_size = get_dp_group().world_size
|
||||
|
||||
self.tp_group = get_tp_group().device_group
|
||||
self.tp_rank = get_tp_group().rank_in_group
|
||||
self.ep_group = get_ep_group()
|
||||
|
||||
self.params_dtype = torch.get_default_dtype()
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
attn_metadata=None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
):
|
||||
if attn_metadata is None:
|
||||
attn_metadata = get_forward_context().attn_metadata
|
||||
# when profile runs, force experts to load balanced tokens
|
||||
# to avoid high memory consumption on a single rank.
|
||||
enable_force_load_balance = get_forward_context().in_profile_run
|
||||
is_prefill = get_forward_context().with_prefill
|
||||
|
||||
# router_logits: (num_tokens, n_experts)
|
||||
router_logits, _ = self.gate(hidden_states)
|
||||
|
||||
hidden_states = self.experts(
|
||||
hidden_states=hidden_states,
|
||||
router_logits=router_logits,
|
||||
is_prefill=is_prefill,
|
||||
top_k=self.top_k,
|
||||
enable_force_load_balance=enable_force_load_balance,
|
||||
shared_experts=None,
|
||||
_metadata_for_padding=_metadata_for_padding,
|
||||
)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen3MoeAttention(Qwen3MoeAttention):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
num_kv_heads: int,
|
||||
rope_theta: float = 10000,
|
||||
rope_scaling: Optional[dict[str, Any]] = None,
|
||||
max_position_embeddings: int = 8192,
|
||||
head_dim: Optional[int] = None,
|
||||
rms_norm_eps: float = 1e-06,
|
||||
qkv_bias: bool = False,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = hidden_size
|
||||
tp_size = get_tensor_model_parallel_world_size()
|
||||
self.total_num_heads = num_heads
|
||||
assert self.total_num_heads % tp_size == 0
|
||||
self.num_heads = self.total_num_heads // tp_size
|
||||
self.total_num_kv_heads = num_kv_heads
|
||||
if self.total_num_kv_heads >= tp_size:
|
||||
# Number of KV heads is greater than TP size, so we partition
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert self.total_num_kv_heads % tp_size == 0
|
||||
else:
|
||||
# Number of KV heads is less than TP size, so we replicate
|
||||
# the KV heads across multiple tensor parallel GPUs.
|
||||
assert tp_size % self.total_num_kv_heads == 0
|
||||
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
||||
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
|
||||
self.q_size = self.num_heads * self.head_dim
|
||||
self.kv_size = self.num_kv_heads * self.head_dim
|
||||
self.scaling = self.head_dim**-0.5
|
||||
self.rope_theta = rope_theta
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
|
||||
self.qkv_proj = QKVParallelLinear(hidden_size,
|
||||
self.head_dim,
|
||||
self.total_num_heads,
|
||||
self.total_num_kv_heads,
|
||||
bias=qkv_bias,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.qkv_proj")
|
||||
|
||||
self.o_proj = RowParallelLinear(self.total_num_heads * self.head_dim,
|
||||
hidden_size,
|
||||
bias=False,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.o_proj")
|
||||
|
||||
self.rotary_emb = get_rope(
|
||||
self.head_dim,
|
||||
rotary_dim=self.head_dim,
|
||||
max_position=max_position_embeddings,
|
||||
base=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
)
|
||||
self.attn = Attention(self.num_heads,
|
||||
self.head_dim,
|
||||
self.scaling,
|
||||
num_kv_heads=self.num_kv_heads,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.attn")
|
||||
|
||||
self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
||||
self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps)
|
||||
ascend_config = get_ascend_config()
|
||||
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
|
||||
|
||||
@staticmethod
|
||||
def normalize_qkv(qkv: torch.Tensor, q_size: int, kv_size: int,
|
||||
head_dim: int, q_norm, k_norm):
|
||||
q, k, v = qkv.split([q_size, kv_size, kv_size], dim=-1)
|
||||
|
||||
q_by_head = q.view(*q.shape[:-1], q.shape[-1] // head_dim, head_dim)
|
||||
q_by_head = q_norm(q_by_head)
|
||||
q = q_by_head.view(q.shape)
|
||||
|
||||
k_by_head = k.view(*k.shape[:-1], k.shape[-1] // head_dim, head_dim)
|
||||
k_by_head = k_norm(k_by_head)
|
||||
k = k_by_head.view(k.shape)
|
||||
|
||||
return q, k, v
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
|
||||
qkv, _ = self.qkv_proj(hidden_states)
|
||||
q, k, v = self.normalize_qkv(qkv, self.q_size, self.kv_size,
|
||||
self.head_dim, self.q_norm, self.k_norm)
|
||||
|
||||
if (self.torchair_graph_enabled and attn_metadata is not None and
|
||||
attn_metadata.attn_state == AscendAttentionState.DecodeOnly):
|
||||
q, k = self.rotary_emb(positions,
|
||||
q,
|
||||
k,
|
||||
is_prefill=False,
|
||||
is_qwen_torchair=True)
|
||||
forward_kwargs = {}
|
||||
if envs.VLLM_USE_V1:
|
||||
output_shape = q.shape
|
||||
output = torch.empty(output_shape,
|
||||
dtype=q.dtype,
|
||||
device=q.device)
|
||||
forward_kwargs['output'] = output
|
||||
|
||||
attn_output = self.attn.impl.forward(self.attn,
|
||||
q,
|
||||
k,
|
||||
v,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
trace_flag=False,
|
||||
**forward_kwargs)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
else:
|
||||
q, k = self.rotary_emb(positions, q, k, is_qwen_torchair=True)
|
||||
attn_output = self.attn(q, k, v)
|
||||
output, _ = self.o_proj(attn_output)
|
||||
return output
|
||||
|
||||
|
||||
class CustomQwen3MoeDecoderLayer(Qwen3MoeDecoderLayer):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
vllm_config: Optional[VllmConfig] = None,
|
||||
prefix: str = "",
|
||||
) -> None:
|
||||
|
||||
nn.Module.__init__(self)
|
||||
self.hidden_size = config.hidden_size
|
||||
rope_theta = getattr(config, "rope_theta", 10000)
|
||||
rope_scaling = getattr(config, "rope_scaling", None)
|
||||
max_position_embeddings = getattr(config, "max_position_embeddings",
|
||||
8192)
|
||||
self.self_attn = CustomQwen3MoeAttention(
|
||||
hidden_size=self.hidden_size,
|
||||
num_heads=config.num_attention_heads,
|
||||
num_kv_heads=config.num_key_value_heads,
|
||||
rope_theta=rope_theta,
|
||||
rope_scaling=rope_scaling,
|
||||
max_position_embeddings=max_position_embeddings,
|
||||
rms_norm_eps=config.rms_norm_eps,
|
||||
qkv_bias=getattr(config, 'attention_bias', False),
|
||||
head_dim=getattr(config, 'head_dim', None),
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
)
|
||||
|
||||
# `mlp_only_layers` in the config.
|
||||
layer_idx = extract_layer_index(prefix)
|
||||
mlp_only_layers = ([] if not hasattr(config, "mlp_only_layers") else
|
||||
config.mlp_only_layers)
|
||||
self.use_aclgraph = (vllm_config is not None
|
||||
and vllm_config.compilation_config.level
|
||||
== CompilationLevel.PIECEWISE
|
||||
and not vllm_config.model_config.enforce_eager)
|
||||
if (layer_idx not in mlp_only_layers) and (
|
||||
config.num_experts > 0 and
|
||||
(layer_idx + 1) % config.decoder_sparse_step == 0):
|
||||
if not self.use_aclgraph:
|
||||
# FIXME: custom sparse moe block doesn't work with aclgraph.
|
||||
self.mlp = CustomSparseMoeBlock(config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3MoeSparseMoeBlock(vllm_config=vllm_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
else:
|
||||
self.mlp = Qwen3MoeMLP(hidden_size=config.hidden_size,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act,
|
||||
quant_config=quant_config,
|
||||
prefix=f"{prefix}.mlp")
|
||||
self.input_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
self.post_attention_layernorm = RMSNorm(config.hidden_size,
|
||||
eps=config.rms_norm_eps)
|
||||
|
||||
self.enable_sequence_parallelism = (
|
||||
vllm_config.compilation_config.pass_config.
|
||||
enable_sequence_parallelism if vllm_config is not None else False)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
positions: torch.Tensor,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: Optional[torch.Tensor],
|
||||
kv_cache: Optional[torch.Tensor] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
) -> torch.Tensor:
|
||||
|
||||
# To prevent precision issues during the decoder phase when only prefilling enables SP
|
||||
if not self.enable_sequence_parallelism:
|
||||
self.self_attn.o_proj.reduce_results = True
|
||||
else:
|
||||
self.self_attn.o_proj.reduce_results = not _metadata_for_padding.not_dummy_and_is_prefill if _metadata_for_padding is not None else True
|
||||
|
||||
# Self Attention
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
residual = _metadata_for_padding.padding_slice(residual)
|
||||
|
||||
hidden_states = self.input_layernorm(hidden_states)
|
||||
else:
|
||||
hidden_states, residual = self.input_layernorm(
|
||||
hidden_states, residual)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
|
||||
hidden_states)
|
||||
|
||||
hidden_states = self.self_attn(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.padding_aligned_reduce_scatter(
|
||||
hidden_states)
|
||||
|
||||
# Fully Connected
|
||||
hidden_states, residual = self.post_attention_layernorm(
|
||||
hidden_states, residual)
|
||||
|
||||
if not self.use_aclgraph:
|
||||
hidden_states = self.mlp(
|
||||
hidden_states, _metadata_for_padding=_metadata_for_padding)
|
||||
else:
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
|
||||
return hidden_states, residual
|
||||
|
||||
|
||||
@support_torch_compile
|
||||
class CustomQwen3MoeModel(Qwen3MoeModel):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
cache_config = vllm_config.cache_config
|
||||
quant_config = vllm_config.quant_config
|
||||
|
||||
parallel_config = vllm_config.parallel_config
|
||||
eplb_config = parallel_config.eplb_config
|
||||
self.num_redundant_experts = eplb_config.num_redundant_experts
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
self.config = config
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
prefix=f"{prefix}.embed_tokens")
|
||||
self.start_layer, self.end_layer, self.layers = make_layers(
|
||||
config.num_hidden_layers,
|
||||
lambda prefix: CustomQwen3MoeDecoderLayer(
|
||||
config=config,
|
||||
cache_config=cache_config,
|
||||
quant_config=quant_config,
|
||||
vllm_config=vllm_config,
|
||||
prefix=prefix),
|
||||
prefix=f"{prefix}.layers",
|
||||
)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
make_empty_intermediate_tensors_factory(
|
||||
["hidden_states", "residual"], config.hidden_size))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
_metadata_for_padding: Optional[MetadataForPadding] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
if get_pp_group().is_first_rank:
|
||||
if inputs_embeds is not None:
|
||||
hidden_states = inputs_embeds
|
||||
else:
|
||||
hidden_states = self.get_input_embeddings(input_ids)
|
||||
residual = None
|
||||
else:
|
||||
assert intermediate_tensors is not None
|
||||
hidden_states = intermediate_tensors["hidden_states"]
|
||||
residual = intermediate_tensors["residual"]
|
||||
for i in range(self.start_layer, self.end_layer):
|
||||
layer = self.layers[i]
|
||||
hidden_states, residual = layer(
|
||||
positions,
|
||||
hidden_states,
|
||||
residual,
|
||||
kv_caches[i -
|
||||
self.start_layer] if kv_caches is not None else None,
|
||||
attn_metadata,
|
||||
_metadata_for_padding=_metadata_for_padding)
|
||||
if not get_pp_group().is_last_rank:
|
||||
return IntermediateTensors({
|
||||
"hidden_states": hidden_states,
|
||||
"residual": residual
|
||||
})
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
if _metadata_for_padding and _metadata_for_padding.not_dummy_and_is_prefill:
|
||||
hidden_states = _metadata_for_padding.allgather_unpadding_aligned(
|
||||
hidden_states)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class CustomQwen3MoeForCausalLM(Qwen3MoeForCausalLM):
|
||||
packed_modules_mapping = {
|
||||
"qkv_proj": [
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
],
|
||||
"gate_up_proj": [
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
],
|
||||
"experts":
|
||||
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"],
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
SupportsPP.__init__(self)
|
||||
SupportsLoRA.__init__(self)
|
||||
MixtureOfExperts.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
quant_config = vllm_config.quant_config
|
||||
self.config = config
|
||||
self.quant_config = quant_config
|
||||
self.model = CustomQwen3MoeModel(vllm_config=vllm_config,
|
||||
prefix=maybe_prefix(prefix, "model"))
|
||||
self.lm_head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "lm_head"))
|
||||
if self.config.tie_word_embeddings:
|
||||
self.lm_head.weight = self.model.embed_tokens.weight
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
self.make_empty_intermediate_tensors = (
|
||||
self.model.make_empty_intermediate_tensors)
|
||||
|
||||
self.enable_sequence_parallelism = vllm_config.compilation_config.pass_config.enable_sequence_parallelism
|
||||
# Set MoE hyperparameters
|
||||
self.expert_weights: list[torch.Tensor] = []
|
||||
|
||||
self.moe_layers: list[FusedMoE] = []
|
||||
example_layer = None
|
||||
for layer in self.model.layers:
|
||||
if isinstance(layer, PPMissingLayer):
|
||||
continue
|
||||
|
||||
assert isinstance(layer, Qwen3MoeDecoderLayer)
|
||||
if isinstance(layer.mlp, Qwen3MoeSparseMoeBlock):
|
||||
example_layer = layer.mlp
|
||||
self.moe_layers.append(layer.mlp.experts)
|
||||
|
||||
if example_layer is None:
|
||||
raise RuntimeError("No Qwen3MoE layer found in the model.layers.")
|
||||
|
||||
self.num_moe_layers = len(self.moe_layers)
|
||||
self.num_expert_groups = 1
|
||||
self.num_shared_experts = 0
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
) -> Union[torch.Tensor, IntermediateTensors]:
|
||||
_metadata_for_padding = init_metadata_for_sp(
|
||||
input_ids, self.enable_sequence_parallelism)
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, intermediate_tensors,
|
||||
inputs_embeds, _metadata_for_padding)
|
||||
return hidden_states
|
||||
218
vllm_npu/torchair/models/torchair_deepseek_mtp.py
Normal file
218
vllm_npu/torchair/models/torchair_deepseek_mtp.py
Normal file
@@ -0,0 +1,218 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Adapted from vllm/model_executor/models/deepseek_mtp.py
|
||||
# Copyright 2023 The vLLM team.
|
||||
#
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from transformers import PretrainedConfig
|
||||
from vllm.attention.backends.abstract import AttentionMetadata
|
||||
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
||||
from vllm.distributed import get_tensor_model_parallel_world_size
|
||||
from vllm.model_executor.layers.layernorm import RMSNorm
|
||||
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
||||
from vllm.model_executor.layers.quantization import QuantizationConfig
|
||||
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
||||
ParallelLMHead, VocabParallelEmbedding)
|
||||
from vllm.model_executor.models.deepseek_mtp import (
|
||||
DeepSeekMTP, DeepSeekMultiTokenPredictor, DeepSeekMultiTokenPredictorLayer,
|
||||
SharedHead)
|
||||
from vllm.model_executor.models.utils import maybe_prefix
|
||||
from vllm.sequence import IntermediateTensors
|
||||
|
||||
from vllm_npu.torchair.models.torchair_deepseek_v2 import \
|
||||
TorchairDeepseekV2DecoderLayer
|
||||
|
||||
|
||||
class TorchairDeepSeekShareHead(SharedHead):
|
||||
|
||||
def __init__(self,
|
||||
config: PretrainedConfig,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
prefix: str = "") -> None:
|
||||
nn.Module.__init__(self)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.head = ParallelLMHead(config.vocab_size,
|
||||
config.hidden_size,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(prefix, "head"))
|
||||
|
||||
|
||||
class TorchairDeepSeekMultiTokenPredictorLayer(DeepSeekMultiTokenPredictorLayer
|
||||
):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
config: PretrainedConfig,
|
||||
prefix: str,
|
||||
model_config: ModelConfig,
|
||||
cache_config: Optional[CacheConfig] = None,
|
||||
quant_config: Optional[QuantizationConfig] = None,
|
||||
) -> None:
|
||||
nn.Module.__init__(self)
|
||||
|
||||
self.tp_size = get_tensor_model_parallel_world_size()
|
||||
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.eh_proj = nn.Linear(config.hidden_size * 2,
|
||||
config.hidden_size,
|
||||
bias=False)
|
||||
self.shared_head = TorchairDeepSeekShareHead(config=config,
|
||||
quant_config=quant_config,
|
||||
prefix=maybe_prefix(
|
||||
prefix,
|
||||
"shared_head"))
|
||||
self.mtp_block = TorchairDeepseekV2DecoderLayer(
|
||||
config, prefix, model_config, cache_config, quant_config)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_index: int = 0,
|
||||
) -> torch.Tensor:
|
||||
assert inputs_embeds is not None
|
||||
# masking inputs at position 0, as not needed by MTP
|
||||
inputs_embeds = torch.where((positions == 0).unsqueeze(-1),
|
||||
torch.zeros_like(inputs_embeds),
|
||||
inputs_embeds)
|
||||
inputs_embeds = self.enorm(inputs_embeds)
|
||||
previous_hidden_states = self.hnorm(previous_hidden_states)
|
||||
|
||||
hidden_states = self.eh_proj(
|
||||
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
|
||||
|
||||
replace_allreduce = hidden_states.shape[0] % self.tp_size == 0
|
||||
|
||||
hidden_states, residual = self.mtp_block(
|
||||
positions=positions,
|
||||
hidden_states=hidden_states,
|
||||
residual=None,
|
||||
kv_cache=kv_cache,
|
||||
attn_metadata=attn_metadata,
|
||||
replace_allreduce=replace_allreduce)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class TorchairDeepSeekMultiTokenPredictor(DeepSeekMultiTokenPredictor):
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
config = vllm_config.model_config.hf_config
|
||||
self.mtp_start_layer_idx = config.num_hidden_layers
|
||||
self.num_mtp_layers = config.num_nextn_predict_layers
|
||||
# to map the exact layer index from weights
|
||||
self.layers = torch.nn.ModuleDict({
|
||||
str(idx):
|
||||
TorchairDeepSeekMultiTokenPredictorLayer(
|
||||
config,
|
||||
f"{prefix}.layers.{idx}",
|
||||
model_config=vllm_config.model_config,
|
||||
cache_config=vllm_config.cache_config,
|
||||
quant_config=vllm_config.quant_config,
|
||||
)
|
||||
for idx in range(self.mtp_start_layer_idx,
|
||||
self.mtp_start_layer_idx + self.num_mtp_layers)
|
||||
})
|
||||
self.embed_tokens = VocabParallelEmbedding(
|
||||
config.vocab_size,
|
||||
config.hidden_size,
|
||||
)
|
||||
|
||||
# Note: torch._dynamo.exc.Unsupported: builtin: str
|
||||
self.layers_list = [
|
||||
self.layers[str(idx)]
|
||||
for idx in range(self.mtp_start_layer_idx,
|
||||
self.mtp_start_layer_idx + self.num_mtp_layers)
|
||||
]
|
||||
self.logits_processor = LogitsProcessor(config.vocab_size)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: torch.Tensor,
|
||||
attn_metadata: AttentionMetadata,
|
||||
previous_hidden_states: torch.Tensor,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
step_kv_cache = kv_caches[
|
||||
current_step_idx] if kv_caches is not None else None
|
||||
return self.layers_list[current_step_idx](
|
||||
input_ids,
|
||||
positions,
|
||||
step_kv_cache,
|
||||
attn_metadata,
|
||||
previous_hidden_states,
|
||||
inputs_embeds,
|
||||
current_step_idx,
|
||||
)
|
||||
|
||||
def compute_logits(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
current_step_idx = (spec_step_idx % self.num_mtp_layers)
|
||||
mtp_layer = self.layers_list[current_step_idx]
|
||||
logits = self.logits_processor(mtp_layer.shared_head.head,
|
||||
mtp_layer.shared_head(hidden_states))
|
||||
return logits
|
||||
|
||||
|
||||
class TorchairDeepSeekMTP(DeepSeekMTP):
|
||||
# NOTE 1.The quantized MTP layer of deepseek on the NPU is not quantized;
|
||||
# NOTE 2.The description file generated by the current msmodelslim tool does not have
|
||||
# MTP layer info. Please manually add it and set the value to FLOAT.
|
||||
packed_modules_mapping = {
|
||||
"gate_up_proj": ["gate_proj", "up_proj"],
|
||||
"experts":
|
||||
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"]
|
||||
}
|
||||
|
||||
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
||||
nn.Module.__init__(self)
|
||||
self.config = vllm_config.model_config.hf_config
|
||||
self.model = TorchairDeepSeekMultiTokenPredictor(
|
||||
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model"))
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
positions: torch.Tensor,
|
||||
kv_caches: Optional[List[torch.Tensor]] = None,
|
||||
attn_metadata: Optional[AttentionMetadata] = None,
|
||||
hidden_states: Optional[torch.Tensor] = None,
|
||||
intermediate_tensors: Optional[IntermediateTensors] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
spec_step_idx: int = 0,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.model(input_ids, positions, kv_caches,
|
||||
attn_metadata, hidden_states, inputs_embeds,
|
||||
spec_step_idx)
|
||||
return hidden_states
|
||||
1301
vllm_npu/torchair/models/torchair_deepseek_v2.py
Normal file
1301
vllm_npu/torchair/models/torchair_deepseek_v2.py
Normal file
File diff suppressed because it is too large
Load Diff
28
vllm_npu/torchair/models/torchair_deepseek_v3.py
Normal file
28
vllm_npu/torchair/models/torchair_deepseek_v3.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# SPDX-License-Identifier: Apache-2.0
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
# Copyright 2023 The vLLM team.
|
||||
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
||||
# and OPT implementations in this library. It has been modified from its
|
||||
# original forms to accommodate minor architectural differences compared
|
||||
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from vllm_npu.torchair.models.torchair_deepseek_v2 import \
|
||||
TorchairDeepseekV2ForCausalLM
|
||||
|
||||
|
||||
class TorchairDeepseekV3ForCausalLM(TorchairDeepseekV2ForCausalLM):
|
||||
pass
|
||||
1118
vllm_npu/torchair/models/torchair_pangu_moe.py
Normal file
1118
vllm_npu/torchair/models/torchair_pangu_moe.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user