Files
vllm-npu-plugin/vllm_npu/torchair/models/torchair_deepseek_v2.py
2026-02-10 23:08:39 +08:00

1302 lines
56 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# # Adapted from
# # vllm-project/vllm/blob/main/vllm/model_executor/models/deepseek_v2.py
# # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# # vllm-project/vllm/vllm/model_executor/models/deepseek_v2.py
# """Inference-only DeepseekV2/DeepseekV3 model."""
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch_npu
from torch import nn
from transformers import PretrainedConfig
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
get_tp_group, split_tensor_along_last_dim,
tensor_model_parallel_all_gather,
tensor_model_parallel_all_reduce,
tensor_model_parallel_reduce_scatter)
from vllm.distributed.parallel_state import get_dp_group, get_ep_group
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
UnquantizedLinearMethod)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.models.deepseek_v2 import \
DeepseekV2ForCausalLM # noqa: E501
from vllm.model_executor.models.deepseek_v2 import \
yarn_get_mscale # noqa: E501
from vllm.model_executor.models.deepseek_v2 import (
DeepseekV2Attention, DeepseekV2DecoderLayer, DeepseekV2MLAAttention,
get_spec_layer_idx_from_weight_name)
from vllm.model_executor.models.utils import (
PPMissingLayer, is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers, maybe_prefix)
from vllm.sequence import IntermediateTensors
from vllm_npu import envs
from vllm_npu.ascend_config import get_ascend_config
from vllm_npu.models.layers.sfa import Indexer
from vllm_npu.ops.weight_prefetch import maybe_npu_prefetch
from vllm_npu.quantization.quant_config import AscendLinearMethod
from vllm_npu.torchair.ops.torchair_fused_moe import TorchairAscendFusedMoE
from vllm_npu.torchair.quantization.torchair_w8a8_dynamic import \
TorchairAscendW8A8DynamicLinearMethod
from vllm_npu.utils import dispose_tensor, oproj_tp_enable
class TorchairDeepseekV2SiluAndMul(SiluAndMul):
def __init__(self,
*,
weight_scale: Optional[Callable[[], torch.Tensor]] = None):
super().__init__()
self.weight_scale = weight_scale
def forward_oot(self, x: Union[torch.Tensor, Tuple[torch.Tensor,
torch.Tensor]]):
if isinstance(x, tuple):
assert self.weight_scale is not None
# For AscendW8A8DynamicLinearMethod:
# a dynamic scale is passed along with the quantized value.
quantized_x, dynamic_scale = x
return torch_npu.npu_dequant_swiglu_quant(
x=quantized_x,
weight_scale=self.weight_scale(),
activation_scale=dynamic_scale,
activate_left=True,
quant_mode=1)
else:
return super().forward_oot(x)
class TorchairDeepseekV2MergedReplicatedLinear(ReplicatedLinear):
def __init__(
self,
input_size: int,
output_sizes: list[int],
bias: bool = True,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
self.output_sizes = output_sizes
super().__init__(input_size,
sum(output_sizes),
bias=bias,
quant_config=quant_config,
prefix=prefix)
def weight_loader(self, param: torch.nn.Parameter,
loaded_weight: torch.Tensor, loaded_shard_id: int):
# With no support for GGUF format yet.
assert not getattr(param, "is_gguf_weight", False)
assert not getattr(param, "is_gguf_weight_type", False)
assert loaded_shard_id < len(self.output_sizes)
shard_offset = sum(self.output_sizes[:loaded_shard_id])
shard_size = self.output_sizes[loaded_shard_id]
shard = param.data.narrow(param.output_dim, shard_offset, shard_size)
assert shard.size() == loaded_weight.size(), (
f"Tried to load weights of size {loaded_weight.size()}"
f"to a parameter shard of id {loaded_shard_id} size {shard.size()}"
)
shard.copy_(loaded_weight)
class TorchairDeepseekV2RowParallelLinearReplaceAllreduce(RowParallelLinear):
def forward(
self,
input_,
is_prefill=True,
is_force_scatter=False
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[nn.Parameter]]]:
if self.input_is_parallel:
input_parallel = input_
else:
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
assert self.quant_method is not None
# Only fuse bias add into GEMM for rank 0 (this ensures that
# bias will not get added more than once in TP>1 case)
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
output_parallel = self.quant_method.apply(self,
input_parallel,
bias=bias_)
forward_context = get_forward_context()
if self.reduce_results and self.tp_size > 1:
num_tokens = output_parallel.shape[0]
if is_force_scatter and num_tokens % self.tp_size:
output_parallel = nn.functional.pad(
output_parallel, (0, 0, 0, -num_tokens % self.tp_size))
if is_force_scatter or (not forward_context.with_prefill
and output_parallel.shape[0] % self.tp_size
== 0):
output = tensor_model_parallel_reduce_scatter(output_parallel,
dim=0)
else:
output = tensor_model_parallel_all_reduce(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
if not self.return_bias:
return output
return output, output_bias
class TorchairDeepseekV2RowParallelLinear(RowParallelLinear):
def forward(
self,
input_,
is_prefill=True,
is_force_scatter=False
) -> Union[torch.Tensor, tuple[torch.Tensor, Optional[nn.Parameter]]]:
if self.input_is_parallel:
input_parallel = input_
else:
tp_rank = get_tensor_model_parallel_rank()
splitted_input = split_tensor_along_last_dim(
input_, num_partitions=self.tp_size)
input_parallel = splitted_input[tp_rank].contiguous()
# Matrix multiply.
assert self.quant_method is not None
# Only fuse bias add into GEMM for rank 0 (this ensures that
# bias will not get added more than once in TP>1 case)
bias_ = None if (self.tp_rank > 0 or self.skip_bias_add) else self.bias
output_parallel = self.quant_method.apply(self,
input_parallel,
bias=bias_)
if self.reduce_results and self.tp_size > 1:
output = tensor_model_parallel_all_reduce(output_parallel)
else:
output = output_parallel
output_bias = self.bias if self.skip_bias_add else None
if not self.return_bias:
return output
return output, output_bias
class TorchairDeepseekV2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
reduce_results: bool = True,
force_replicate: bool = False,
prefix: str = "",
) -> None:
super().__init__()
if not force_replicate:
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj")
else:
self.gate_up_proj = TorchairDeepseekV2MergedReplicatedLinear(
hidden_size, [intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj")
self.down_proj = ReplicatedLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj")
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
quant_method = self.gate_up_proj.quant_method
if isinstance(quant_method, UnquantizedLinearMethod):
self.act_fn = TorchairDeepseekV2SiluAndMul()
elif (isinstance(quant_method, AscendLinearMethod)
and isinstance(quant_method.quant_method,
TorchairAscendW8A8DynamicLinearMethod)):
# TODO(sdmyzlp): Currently preserved as before:
# 1. The only quantization supported for silu is W8A8Dynamic
# 2. Output dtype of gate_up/down is fixed to be int32/bfloat16
#
# Maybe one can implement a better and more general configuration
# scheme, e.g. by somehow passing around the tweaked `quant_config`
self.act_fn = TorchairDeepseekV2SiluAndMul(
# Use lazy binding, for `weight_scale_fp32` is accessible
# only after `process_weights_after_loading`.
weight_scale=lambda: self.gate_up_proj.weight_scale_fp32)
# To be consumed by AscendW8A8DynamicLinearMethod.apply()
self.gate_up_proj._ascend_quant_config = {
"output_dtype": torch.int32,
"pertoken_scale": False,
"return_scale": True,
}
self.down_proj._ascend_quant_config = {
"output_dtype": torch.bfloat16,
"pertoken_scale": True,
"return_scale": False,
}
else:
raise NotImplementedError(
f"Quantization with [{type(quant_method)}] is NOT supported")
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class TorchairDeepseekV2MoE(nn.Module):
top_k: int
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.n_shared_experts = config.n_shared_experts
if self.tp_size > config.n_routed_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {config.n_routed_experts}.")
if config.hidden_act != "silu":
raise ValueError(f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now.")
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
self.multistream_overlap_shared_expert = \
ascend_config.multistream_overlap_shared_expert and \
self.torchair_graph_enabled
self.enable_super_kernel = ascend_config.torchair_graph_config.enable_super_kernel
self.params_dtype = torch.float32 if self.enable_super_kernel else \
torch.get_default_dtype()
# Converting gate weight to fp32 is to adapt to the super kernel feature.
# Super kernel feature currently cannot fuse operators such as cast, stridedslice, and add.
# In the moe stage, Cast will interrupt the fusion of the super kernel. To avoid this problem,
# modifications will be made in the initialization stage.
self.gate = ReplicatedLinear(config.hidden_size,
config.n_routed_experts,
bias=False,
quant_config=None,
params_dtype=self.params_dtype,
prefix=f"{prefix}.gate")
if config.topk_method == "noaux_tc":
self.gate.e_score_correction_bias = nn.Parameter(
torch.empty(config.n_routed_experts, dtype=self.params_dtype))
else:
self.gate.e_score_correction_bias = None
self.experts = TorchairAscendFusedMoE(
num_experts=config.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True,
num_expert_group=config.n_group,
topk_group=config.topk_group,
prefix=f"{prefix}.experts",
scoring_func=config.scoring_func,
e_score_correction_bias=self.gate.e_score_correction_bias)
if config.n_shared_experts is not None:
self.all_reduce_merge = self.experts.all_reduce_merge
reduce_results = not self.all_reduce_merge
intermediate_size = (config.moe_intermediate_size *
config.n_shared_experts)
enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
self.shared_experts = TorchairDeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=reduce_results,
force_replicate=self.multistream_overlap_shared_expert
or enable_shared_expert_dp,
prefix=f"{prefix}.shared_experts",
)
else:
self.shared_experts = None # type: ignore
TorchairDeepseekV2MoE.top_k = config.num_experts_per_tok
self.dp_size = get_dp_group().world_size
self.tp_group = get_tp_group().device_group
self.tp_rank = get_tp_group().rank_in_group
self.ep_group = get_ep_group()
self.params_dtype = torch.get_default_dtype()
self.rm_router_logits = self.experts.rm_router_logits
def forward(self,
hidden_states: torch.Tensor,
attn_metadata: Optional[AttentionMetadata] = None,
replace_allreduce: bool = False) -> torch.Tensor:
forward_context = get_forward_context()
# when profile runs, force experts to load balanced tokens
# to avoid high memory consumption on a single rank.
enable_force_load_balance = forward_context.in_profile_run
is_prefill = forward_context.with_prefill
# router_logits: (num_tokens, n_experts)
router_logits = None
if not self.rm_router_logits and not self.multistream_overlap_shared_expert:
router_logits, _ = self.gate(hidden_states)
experts_hidden_states = self.experts(
hidden_states=hidden_states,
router_logits=router_logits,
is_prefill=is_prefill,
top_k=TorchairDeepseekV2MoE.top_k,
enable_force_load_balance=enable_force_load_balance,
shared_experts=self.shared_experts,
gate=self.gate,
replace_allreduce=replace_allreduce)
hidden_states = (
experts_hidden_states[0] * self.routed_scaling_factor +
experts_hidden_states[1])
if self.all_reduce_merge:
# When all_reduce_merge is in progress, shared_experts does not do all_reduce in mlp, but waits until shared_experts+router_experts are completed before doing all_reduce
hidden_states = tensor_model_parallel_all_reduce(hidden_states)
return hidden_states
class TorchairDeepseekV2MLAAttention(DeepseekV2MLAAttention):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: Optional[int],
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
decoder_layer=None,
) -> None:
nn.Module.__init__(self)
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
self.tp_size = get_tensor_model_parallel_world_size()
assert num_heads % self.tp_size == 0
self.num_local_heads = num_heads // self.tp_size
self.layers = config.num_hidden_layers
self.first_k_dense_replace = config.first_k_dense_replace
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.prefix = prefix
self.debug_layer_idx = int(self.prefix.split(".")[-2])
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
self.enable_multistream_mla = \
ascend_config.torchair_graph_config.enable_multistream_mla
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_a_proj")
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(q_lora_rank,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj")
else:
self.q_proj = ColumnParallelLinear(self.hidden_size,
self.num_heads *
self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj")
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa")
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj")
if oproj_tp_enable():
self.o_proj = RowParallelLinear(self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
elif (config.n_routed_experts is not None
and self.debug_layer_idx >= config.first_k_dense_replace
and self.debug_layer_idx % config.moe_layer_freq == 0
and (ascend_config.multistream_overlap_shared_expert
or self.enable_shared_expert_dp)):
self.o_proj = TorchairDeepseekV2RowParallelLinearReplaceAllreduce(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
else:
self.o_proj = TorchairDeepseekV2RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj")
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
# In the MLA backend, kv_cache includes both k_c and
# pe (i.e. decoupled position embeddings). In particular,
# the concat_and_cache_mla op requires
# k_c.size(1) + k_pe.size(1) == kv_cache.size(2)
# i.e.
# kv_lora_rank + qk_rope_head_dim == head_size
self.mla_attn = Attention(
num_heads=self.num_local_heads,
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
scale=self.scaling,
num_kv_heads=1,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_mla=True,
# MLA Args
q_lora_rank=self.q_lora_rank,
kv_lora_rank=self.kv_lora_rank,
qk_nope_head_dim=self.qk_nope_head_dim,
qk_rope_head_dim=self.qk_rope_head_dim,
qk_head_dim=self.qk_head_dim,
v_head_dim=self.v_head_dim,
rotary_emb=self.rotary_emb,
q_proj=self.q_proj if self.q_lora_rank is None else None,
q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
kv_a_layernorm=self.kv_a_layernorm,
kv_b_proj=self.kv_b_proj,
o_proj=self.o_proj,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
forward_context = get_forward_context()
enable_multistream_mla = (self.enable_multistream_mla
and attn_metadata is not None
and not forward_context.with_prefill
and attn_metadata.num_decodes > 0)
forward_kwargs = {"enable_multistream_mla": enable_multistream_mla}
if self.q_lora_rank is not None:
maybe_npu_prefetch(self.q_a_proj.weight,
hidden_states,
enabled=enable_multistream_mla)
ckq = self.q_a_proj(hidden_states)[0]
hidden_states_or_q_c = self.q_a_layernorm(ckq)
forward_kwargs['ckq'] = ckq
else:
hidden_states_or_q_c = hidden_states
if self.torchair_graph_enabled:
output_shape = hidden_states.shape
output = torch.empty(output_shape,
dtype=hidden_states_or_q_c.dtype,
device=hidden_states_or_q_c.device)
forward_kwargs['output'] = output
output = self.mla_attn.impl.forward(self.mla_attn,
hidden_states_or_q_c,
hidden_states, None, kv_cache,
attn_metadata,
**forward_kwargs)
output = output.view(-1, output_shape[-1])
return output
else:
kv_no_split = self.kv_a_proj_with_mqa(hidden_states)[0]
if self.enable_shared_expert_dp and self.debug_layer_idx > self.first_k_dense_replace and self.debug_layer_idx < self.layers:
hidden_states_or_q_c = get_tp_group().all_gather(
hidden_states_or_q_c, 0)
kv_no_split = get_tp_group().all_gather(kv_no_split, 0)
kv_c, k_pe = kv_no_split.split(
[self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
kv_c_normed = self.kv_a_layernorm(kv_c.contiguous())
if not self.enable_shared_expert_dp or self.debug_layer_idx < self.first_k_dense_replace:
output_shape = hidden_states.shape
else:
num_tokens = hidden_states_or_q_c.shape[0]
rows = num_tokens // self.tp_size
if num_tokens % self.tp_size:
rows += 1
output_shape = (rows, hidden_states.shape[1])
return self.mla_attn(hidden_states_or_q_c,
kv_c_normed,
k_pe,
output_shape=output_shape)
class TorchairDeepseekV2SFAAttention(DeepseekV2MLAAttention):
def __init__(
self,
config: PretrainedConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: Optional[int],
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
decoder_layer=None,
) -> None:
nn.Module.__init__(self)
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
self.tp_size = get_tensor_model_parallel_world_size()
assert num_heads % self.tp_size == 0
self.num_local_heads = num_heads // self.tp_size
self.layers = config.num_hidden_layers
self.first_k_dense_replace = config.first_k_dense_replace
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.prefix = prefix
self.debug_layer_idx = int(self.prefix.split(".")[-2])
ascend_config = get_ascend_config()
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(
self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_a_proj",
return_bias=False,
)
self.q_a_layernorm = RMSNorm(self.q_lora_rank,
eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(
q_lora_rank,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj",
return_bias=False,
)
else:
self.q_proj = ColumnParallelLinear(
self.hidden_size,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj",
return_bias=False,
)
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa",
return_bias=False,
)
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank,
eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj",
return_bias=False,
)
if (config.n_routed_experts is not None
and self.debug_layer_idx >= config.first_k_dense_replace
and self.debug_layer_idx % config.moe_layer_freq == 0
and (ascend_config.multistream_overlap_shared_expert
or self.enable_shared_expert_dp)):
self.o_proj = TorchairDeepseekV2RowParallelLinearReplaceAllreduce(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
return_bias=False,
)
else:
self.o_proj = TorchairDeepseekV2RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
return_bias=False,
)
if rope_scaling:
rope_scaling["rope_type"] = 'deepseek_yarn'
self.rotary_emb = get_rope(qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
self.dim: int = config.hidden_size # 7168
# TODO(zzzzwwjj): wait transformers add these params
self.n_heads: int = 64 # 64
self.head_dim: int = 128 # 128
self.index_topk: int = 2048 # 2048
self.indexer = Indexer(
config,
quant_config=quant_config,
dim=self.dim,
n_heads=self.n_heads,
head_dim=self.head_dim,
index_topk=self.index_topk,
prefix=f"{prefix}.indexer",
)
self.sfa_attn = Attention(
num_heads=self.num_local_heads,
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
scale=self.scaling,
num_kv_heads=1,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_mla=True,
use_sparse=True,
# SFA Args
q_lora_rank=self.q_lora_rank,
kv_lora_rank=self.kv_lora_rank,
qk_nope_head_dim=self.qk_nope_head_dim,
qk_rope_head_dim=self.qk_rope_head_dim,
qk_head_dim=self.qk_head_dim,
v_head_dim=self.v_head_dim,
rotary_emb=self.rotary_emb,
q_a_proj=self.q_a_proj if self.q_lora_rank is not None else None,
q_a_layernorm=self.q_a_layernorm
if self.q_lora_rank is not None else None,
q_proj=self.q_proj if self.q_lora_rank is None else self.q_b_proj,
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
kv_a_layernorm=self.kv_a_layernorm,
kv_b_proj=self.kv_b_proj,
o_proj=self.o_proj,
indexer=self.indexer,
decoder_layer=decoder_layer,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
forward_context = get_forward_context()
if not self.torchair_graph_enabled:
if forward_context.attn_metadata is not None and isinstance(
forward_context.attn_metadata, dict):
attn_metadata = next(
iter(forward_context.attn_metadata.values()), None)
else:
attn_metadata = forward_context.attn_metadata
if kv_cache is None:
kv_cache = self.sfa_attn.kv_cache[
forward_context.virtual_engine]
num_tokens = hidden_states.shape[0]
need_gather_q_kv = False
# if self.enable_shared_expert_dp and self.debug_layer_idx > self.first_k_dense_replace and self.debug_layer_idx < self.layers:
# # Simulate all gather to calculate output shape
# num_tokens = num_tokens * self.tp_size
# need_gather_q_kv = True
if not self.enable_shared_expert_dp or self.debug_layer_idx != self.first_k_dense_replace:
output_shape = hidden_states.shape
if self.enable_shared_expert_dp and (
self.debug_layer_idx == self.first_k_dense_replace
or self.debug_layer_idx == self.layers):
rows = num_tokens // self.tp_size
if num_tokens % self.tp_size:
rows += 1
output_shape = (rows, hidden_states.shape[1])
output = torch.empty(output_shape,
dtype=hidden_states.dtype,
device=hidden_states.device)
self.sfa_attn.impl.forward(hidden_states, kv_cache, attn_metadata,
need_gather_q_kv, output)
output = output.view(-1, output_shape[-1])
return output
class TorchairDeepseekV2DecoderLayer(DeepseekV2DecoderLayer):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
model_config: ModelConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
nn.Module.__init__(self)
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings",
8192)
# DecoderLayers are created with `make_layers` which passes the prefix
# with the layer's index.
layer_idx = int(prefix.split(sep='.')[-1])
self.layer_idx = layer_idx
self.layers = config.num_hidden_layers
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tp_group().rank_in_group
ascend_config = get_ascend_config()
self.use_mla = False
self.use_sparse = False
# TODO: enable mla in vllm-ascend
if model_config.use_mla:
if hasattr(model_config.hf_config, "index_topk"):
attn_cls = TorchairDeepseekV2SFAAttention
self.use_sparse = True
else:
attn_cls = TorchairDeepseekV2MLAAttention # type: ignore[assignment]
self.use_mla = True
else:
attn_cls = DeepseekV2Attention
self.self_attn = attn_cls(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
qk_nope_head_dim=config.qk_nope_head_dim,
qk_rope_head_dim=config.qk_rope_head_dim,
v_head_dim=config.v_head_dim,
q_lora_rank=config.q_lora_rank
if hasattr(config, "q_lora_rank") else None,
kv_lora_rank=config.kv_lora_rank,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
decoder_layer=self,
)
if (config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0):
self.mlp = TorchairDeepseekV2MoE(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.mla_moe_communication = ascend_config.multistream_overlap_shared_expert \
and model_config.use_mla and self.tp_size > 1
else:
self.mlp = TorchairDeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.mla_moe_communication = False
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.routed_scaling_factor = config.routed_scaling_factor
self.first_k_dense_replace = config.first_k_dense_replace
self.tp_group = get_tp_group().device_group
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None,
replace_allreduce: bool = False,
) -> torch.Tensor:
# Self Attention
forward_context = get_forward_context()
if attn_metadata is not None:
decoding_condition_met = (
not attn_metadata.is_prefill if self.use_sparse else
not forward_context.with_prefill if self.use_mla else False)
mla_moe_communication = decoding_condition_met and self.mla_moe_communication and replace_allreduce
else:
mla_moe_communication = False
if (envs.vllm_npu_ENABLE_MLAPO
and isinstance(self.self_attn, TorchairDeepseekV2SFAAttention)
and attn_metadata is not None
and not forward_context.with_prefill):
if residual is not None:
hidden_states = hidden_states + residual
residual = hidden_states
else:
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
previous_hidden_states, previous_residual = hidden_states, residual
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
# Dispose hidden_states and residual from the previous layer
# to save npu memory because they're no longer used.
dispose_tensor(previous_hidden_states)
dispose_tensor(previous_residual)
if mla_moe_communication and self.layer_idx > self.first_k_dense_replace and self.layer_idx < self.layers:
hidden_states = tensor_model_parallel_all_gather(hidden_states,
dim=0)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
)
if mla_moe_communication and residual.shape[0] != hidden_states.shape[
0]:
chunk_hidden_states = torch.tensor_split(residual,
self.tp_size,
dim=0)
residual = chunk_hidden_states[self.tp_rank]
if hidden_states.dtype == torch.float16:
# Fix FP16 overflow
# We scale both hidden_states and residual before
# rmsnorm, and rmsnorm result would not affect by scale.
hidden_states *= 1. / self.routed_scaling_factor
if self.layer_idx == 0:
# The residual is shared by all layers, we only scale it on
# first layer.
residual *= 1. / self.routed_scaling_factor
tp_size = get_tensor_model_parallel_world_size()
if self.enable_shared_expert_dp and (
self.layer_idx == self.first_k_dense_replace
or self.layer_idx == self.layers) and tp_size > 1:
num_tokens, _ = residual.shape
if num_tokens % tp_size:
residual = nn.functional.pad(residual,
(0, 0, 0, -num_tokens % tp_size))
chunk_residual = torch.tensor_split(residual, tp_size, dim=0)
tp_rank = get_tensor_model_parallel_rank()
residual = chunk_residual[tp_rank]
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
if isinstance(self.mlp, TorchairDeepseekV2MoE):
hidden_states = self.mlp(hidden_states,
attn_metadata,
replace_allreduce=mla_moe_communication)
else:
hidden_states = self.mlp(hidden_states)
if isinstance(self.mlp, TorchairDeepseekV2MLP
) and hidden_states.dtype == torch.float16:
# Fix FP16 overflow
# Scaling the DeepseekV2MLP output, it is the input of
# input_layernorm of next decoder layer.
# The scaling of DeepseekV2MOE output would be done in the forward
# of DeepseekV2MOE
hidden_states *= 1. / self.routed_scaling_factor
if mla_moe_communication and self.layer_idx >= self.layers - 1:
hidden_states = tensor_model_parallel_all_gather(hidden_states,
dim=0)
residual = tensor_model_parallel_all_gather(residual, dim=0)
# for last layer of main model and mtp layer.
if self.enable_shared_expert_dp and self.layer_idx >= (
self.layers - 1) and tp_size > 1:
hidden_states = get_tp_group().all_gather(hidden_states, 0)
residual = get_tp_group().all_gather(residual, 0)
attn_metadata = get_forward_context().attn_metadata
if attn_metadata is not None and isinstance(attn_metadata, dict):
attn_metadata = next(iter(attn_metadata.values()), None)
if attn_metadata is not None:
num_tokens = attn_metadata.num_actual_tokens
else:
num_tokens = hidden_states.shape[0]
if num_tokens < hidden_states.shape[0]:
hidden_states = hidden_states[:num_tokens]
residual = residual[:num_tokens]
return hidden_states, residual
class TorchairDeepseekV2Model(nn.Module):
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.tp_size = get_tensor_model_parallel_world_size()
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens")
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: TorchairDeepseekV2DecoderLayer(
config,
prefix,
model_config=model_config,
cache_config=cache_config,
quant_config=quant_config,
),
prefix=f"{prefix}.layers")
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = (
make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size))
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[List[torch.Tensor]] = None,
attn_metadata: Optional[AttentionMetadata] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
replace_allreduce = hidden_states.shape[0] % self.tp_size == 0
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
residual,
kv_caches[i -
self.start_layer] if kv_caches is not None else None,
attn_metadata,
replace_allreduce=replace_allreduce)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class TorchairDeepseekV2ForCausalLM(DeepseekV2ForCausalLM):
# add `packed_modules_mapping` in `DeepseekV2ForCausalLM` to support weight merging
packed_modules_mapping = {
"gate_up_proj": ["gate_proj", "up_proj"],
"experts":
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"]
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.num_dense_layers = self.config.first_k_dense_replace
self.num_moe_layers = self.config.num_hidden_layers - self.num_dense_layers
self.quant_config = quant_config
self.model = TorchairDeepseekV2Model(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "model"))
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(
prefix, "lm_head"))
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
# NOTE: This `load_weights` is mainly copied from
# https://github.com/vllm-project/vllm/commit/07b8fae219b1fff51ef115c38c44b51395be5bb5
# to fix CI, and it is different from the implementation in main
# TODO: support eplb style load_weights
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
""""""
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = TorchairAscendFusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if "module" in name:
continue
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue # skip spec decode layers for main model
for (param_name, weight_name, shard_id) in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if (("mlp.experts." in name) and name not in params_dict):
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
return_success=False)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[List[torch.Tensor]] = None,
attn_metadata: Optional[AttentionMetadata] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states