Files
vllm-npu-plugin/vllm_npu/torchair/models/qwen2.py
2026-02-10 23:08:39 +08:00

364 lines
14 KiB
Python

# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
from collections.abc import Iterable
from typing import Any, List, Optional, Union
import torch
import torch.nn.functional as F
import vllm
import vllm.envs as envs
from torch import nn
from transformers import Qwen2Config
from vllm.attention import AttentionMetadata, AttentionType
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (get_pp_group, tensor_model_parallel_all_gather,
tensor_model_parallel_reduce_scatter)
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
from vllm.model_executor.models.qwen2 import Qwen2Attention # noqa: F401
from vllm.model_executor.models.qwen2 import Qwen2ForCausalLM # noqa: F401
from vllm.model_executor.models.qwen2 import Qwen2MLP, Qwen2Model
from vllm.model_executor.models.utils import (AutoWeightsLoader,
PPMissingLayer, maybe_prefix)
from vllm.sequence import IntermediateTensors
from vllm_npu.ascend_config import get_ascend_config
from vllm_npu.attention.attention_v1 import AscendAttentionState
def all_gather_and_maybe_unpad(
hidden_states: torch.Tensor,
pad_size: int,
) -> torch.Tensor:
hidden_states = tensor_model_parallel_all_gather(hidden_states, 0)
if pad_size > 0:
return hidden_states[:-pad_size, :]
return hidden_states
def maybe_pad_and_reduce_scatter(
hidden_states: torch.Tensor,
pad_size: int,
) -> torch.Tensor:
if pad_size > 0:
hidden_states = F.pad(hidden_states, (0, 0, 0, pad_size))
hidden_states = tensor_model_parallel_reduce_scatter(hidden_states, 0)
return hidden_states
class CustomQwen2Attention(Qwen2Attention):
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position: int = 4096 * 32,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
rope_scaling: Optional[tuple] = None,
prefix: str = "",
attn_type: str = AttentionType.DECODER,
dual_chunk_attention_config: Optional[dict[str, Any]] = None,
) -> None:
super().__init__(
hidden_size=hidden_size,
num_heads=num_heads,
num_kv_heads=num_kv_heads,
max_position=max_position,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
rope_scaling=rope_scaling,
prefix=prefix,
attn_type=attn_type,
dual_chunk_attention_config=dual_chunk_attention_config)
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.torchair_graph_enabled and attn_metadata is not None and attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
q, k = self.rotary_emb(positions,
q,
k,
is_prefill=False,
is_qwen_torchair=True)
forward_kwargs = {}
if envs.VLLM_USE_V1:
output_shape = q.shape
output = torch.empty(output_shape,
dtype=q.dtype,
device=q.device)
forward_kwargs['output'] = output
attn_output = self.attn.impl.forward(self.attn,
q,
k,
v,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
trace_flag=False,
**forward_kwargs)
output, _ = self.o_proj(attn_output)
return output
else:
if type(self.rotary_emb) is RotaryEmbedding:
q, k = self.rotary_emb(positions, q, k, is_qwen_torchair=True)
else:
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class CustomQwen2DecoderLayer(nn.Module):
def __init__(
self,
config: Qwen2Config,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
# Requires transformers > 4.32.0
rope_theta = getattr(config, "rope_theta", 1000000)
rope_scaling = getattr(config, "rope_scaling", None)
dual_chunk_attention_config = getattr(config,
"dual_chunk_attention_config",
None)
# By default, Qwen2 uses causal attention as it is a decoder-only model.
# You can override the HF config with `is_causal=False` to enable
# bidirectional attention, which is used in some embedding models
# (e.g. Alibaba-NLP/gte-Qwen2-7B-instruct)
if getattr(config, "is_causal", True):
attn_type = AttentionType.DECODER
else:
attn_type = AttentionType.ENCODER_ONLY
self.self_attn = CustomQwen2Attention(
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
max_position=config.max_position_embeddings,
num_kv_heads=config.num_key_value_heads,
rope_theta=rope_theta,
cache_config=cache_config,
quant_config=quant_config,
rope_scaling=rope_scaling,
prefix=f"{prefix}.self_attn",
attn_type=attn_type,
dual_chunk_attention_config=dual_chunk_attention_config,
)
self.mlp = Qwen2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: Optional[torch.Tensor],
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(
hidden_states, residual)
hidden_states = self.self_attn(positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(
hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile(
dynamic_arg_dims={
"input_ids": 0,
# positions is of shape (3, seq_len) if mrope is enabled for qwen2-vl,
# otherwise (seq_len, ).
"positions": -1,
"intermediate_tensors": 0,
"inputs_embeds": 0,
})
class CustomQwen2Model(Qwen2Model):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
decoder_layer_type: type[nn.Module] = CustomQwen2DecoderLayer):
super().__init__(vllm_config=vllm_config,
prefix=prefix,
decoder_layer_type=decoder_layer_type)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[List[torch.Tensor]] = None,
attn_metadata: Optional[AttentionMetadata] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
kv_cache = kv_caches[i - self.start_layer] \
if kv_caches is not None else None
hidden_states, residual = layer(positions,
hidden_states,
residual,
kv_cache=kv_cache,
attn_metadata=attn_metadata)
if not get_pp_group().is_last_rank:
return IntermediateTensors({
"hidden_states": hidden_states,
"residual": residual
})
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class CustomQwen2ForCausalLM(nn.Module, SupportsLoRA, SupportsPP):
# add `CustomQwen2Model` to init self.model
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
lora_config = vllm_config.lora_config
self.config = config
self.lora_config = lora_config
self.quant_config = quant_config
self.model = CustomQwen2Model(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
if get_pp_group().is_last_rank:
if config.tie_word_embeddings:
self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(
prefix, "lm_head"))
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[List[torch.Tensor]] = None,
attn_metadata: Optional[AttentionMetadata] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, intermediate_tensors,
inputs_embeds)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata=None, # type: ignore
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.lm_head, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."]
if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)
vllm.model_executor.models.qwen2.Qwen2ForCausalLM = CustomQwen2ForCausalLM