Files
handsomezhuzhu.github.io/otherdocs/概统/06-随机变量的数字特征.md
2026-01-03 16:26:46 +08:00

135 lines
4.5 KiB
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 六、随机变量的数字特征
## 1. 数学期望
**定义**
离散型:设$P\{X = x_k\} = p_k$,若$\sum_{k=1}^{\infty} x_k p_k$绝对收敛,则
$$E(X) = \sum_{k=1}^{\infty} x_k p_k$$
连续型:若$\int_{-\infty}^{\infty} xf(x)dx$绝对收敛,则
$$E(X) = \int_{-\infty}^{\infty} xf(x)dx$$
**随机变量函数的期望**
设$Y = g(X)$g是连续函数
- 离散型:$E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k)p_k$
- 连续型:$E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx$
**数学期望性质**
1. 设C是常数则$E(C) = C$
2. 设X是随机变量C是常数则$E(X + C) = E(X) + C$
3. 设X是随机变量C是常数则$E(CX) = CE(X)$
4. 设X,Y是两个随机变量则$E(X \pm Y) = E(X) \pm E(Y)$(可推广到任意有限个)
5. 设X,Y是相互独立的随机变量则$E(XY) = E(X)E(Y)$(可推广到任意有限个)
---
## 2. 方差与标准差
**定义**$D(X) = E\{[X - E(X)]^2\}$
**计算公式**$D(X) = E(X^2) - [E(X)]^2$
**标准差**$\sigma(X) = \sqrt{D(X)}$
**方差的计算**
离散型:$D(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k$
连续型:$D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x)dx$
**方差性质**
1. 设C是常数则$D(C) = 0$
2. 设X是随机变量C是常数则$D(CX) = C^2D(X)$$D(X + C) = D(X)$
3. 设X,Y是两个随机变量
$$D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)$$
特别地若X,Y相互独立则$D(X \pm Y) = D(X) + D(Y)$
4. $D(X) = 0$的充要条件是X以概率1取常数$E(X)$,即$P\{X = E(X)\} = 1$
---
## 3. 协方差
**定义**$Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$
**计算公式**$Cov(X,Y) = E(XY) - E(X)E(Y)$
**性质**
1. $Cov(X,Y) = Cov(Y,X)$(对称性)
2. $Cov(X,C) = 0$C为常数
3. $Cov(X,X) = D(X)$
4. $Cov(aX, bY) = ab \cdot Cov(X,Y)$a,b是常数
5. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$(双线性)
6. 若X,Y相互独立则$Cov(X,Y)=0$
**与方差的关系**
$$D(X + Y) = D(X) + D(Y) + 2Cov(X,Y)$$
---
## 4. 相关系数
**定义**
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$
**性质**
1. $|\rho_{XY}| \leq 1$
2. $|\rho_{XY}| = 1$的充要条件是存在常数a,b使$P\{Y = a + bX\} = 1$(线性关系)
3. 若X,Y相互独立则$\rho_{XY} = 0$(不相关)
4. **不相关 ≠ 独立**$\rho_{XY} = 0$只说明X,Y没有线性关系可能有非线性关系
**不相关的等价条件**(以下四条等价):
- $\rho_{XY} = 0$
- $Cov(X,Y) = 0$
- $E(XY) = E(X)E(Y)$
- $D(X + Y) = D(X) + D(Y)$
---
## 5. 矩
**定义**设X和Y是随机变量
| 矩的类型 | 定义 | 说明 |
|---------|------|------|
| **k阶原点矩** | $E(X^k)$$k = 1,2,...$ | 一阶原点矩就是期望E(X) |
| **k阶中心矩** | $E\{[X - E(X)]^k\}$$k = 2,3,...$ | 二阶中心矩就是方差D(X) |
| **k+l阶混合矩** | $E(X^k Y^l)$$k,l = 1,2,...$ | |
| **k+l阶混合中心矩** | $E\{[X-E(X)]^k[Y-E(Y)]^l\}$ | 二阶混合中心矩就是协方差Cov(X,Y) |
---
## 6. 切比雪夫不等式
设$E(X)=\mu$$D(X)=\sigma^2$存在,则对任意$\varepsilon>0$
$$P\{|X-\mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$
等价地,
$$P\{|X-\mu| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}$$
---
## 7. 数字特征典型例题
**例**设随机变量$X \sim N(\mu, \sigma^2)$$Y \sim N(\mu, \sigma^2)$且设X,Y相互独立$Z_1 = \alpha X + \beta Y$$Z_2 = \alpha X - \beta Y$的相关系数其中$\alpha, \beta$是不为零的常数)。
**解**由于$X, Y \sim N(\mu, \sigma^2)$可得
$$E(X) = E(Y) = \mu, \quad D(X) = D(Y) = \sigma^2$$
$Z_1$$Z_2$的相关系数
$$\rho_{Z_1Z_2} = \frac{E(Z_1Z_2) - E(Z_1) \cdot E(Z_2)}{\sqrt{D(Z_1)} \cdot \sqrt{D(Z_2)}}$$
$E(Z_1) = E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y) = (\alpha + \beta)\mu$
$E(Z_2) = E(\alpha X - \beta Y) = \alpha E(X) - \beta E(Y) = (\alpha - \beta)\mu$
$E(Z_1Z_2) = E[(\alpha X + \beta Y)(\alpha X - \beta Y)] = E(\alpha^2 X^2 - \beta^2 Y^2) = \alpha^2 E(X^2) - \beta^2 E(Y^2)$
$= (\alpha^2 - \beta^2)(\sigma^2 + \mu^2)$
$D(Z_1) = D(\alpha X + \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2$
$D(Z_2) = D(\alpha X - \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2$
于是
$$\rho_{Z_1Z_2} = \frac{(\alpha^2 - \beta^2)(\sigma^2 + \mu^2) - (\alpha + \beta)\mu(\alpha - \beta)\mu}{\sqrt{(\alpha^2 + \beta^2)\sigma^2} \cdot \sqrt{(\alpha^2 + \beta^2)\sigma^2}} = \frac{(\alpha^2 - \beta^2)\sigma^2}{(\alpha^2 + \beta^2)\sigma^2} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}$$