4.5 KiB
六、随机变量的数字特征
1. 数学期望
定义:
离散型:设$P{X = x_k} = p_k$,若$\sum_{k=1}^{\infty} x_k p_k$绝对收敛,则
E(X) = \sum_{k=1}^{\infty} x_k p_k
连续型:若$\int_{-\infty}^{\infty} xf(x)dx$绝对收敛,则
E(X) = \int_{-\infty}^{\infty} xf(x)dx
随机变量函数的期望:
设$Y = g(X)$,g是连续函数
- 离散型:
E(Y) = E[g(X)] = \sum_{k=1}^{\infty} g(x_k)p_k - 连续型:
E(Y) = E[g(X)] = \int_{-\infty}^{\infty} g(x)f(x)dx
数学期望性质:
- 设C是常数,则
E(C) = C - 设X是随机变量,C是常数,则
E(X + C) = E(X) + C - 设X是随机变量,C是常数,则
E(CX) = CE(X) - 设X,Y是两个随机变量,则$E(X \pm Y) = E(X) \pm E(Y)$(可推广到任意有限个)
- 设X,Y是相互独立的随机变量,则$E(XY) = E(X)E(Y)$(可推广到任意有限个)
2. 方差与标准差
定义:D(X) = E\{[X - E(X)]^2\}
计算公式:D(X) = E(X^2) - [E(X)]^2
标准差:\sigma(X) = \sqrt{D(X)}
方差的计算:
离散型:D(X) = \sum_{k=1}^{\infty} [x_k - E(X)]^2 p_k
连续型:D(X) = \int_{-\infty}^{\infty} [x - E(X)]^2 f(x)dx
方差性质:
- 设C是常数,则
D(C) = 0 - 设X是随机变量,C是常数,则$D(CX) = C^2D(X)$,
D(X + C) = D(X) - 设X,Y是两个随机变量,则
D(X \pm Y) = D(X) + D(Y) \pm 2Cov(X,Y)特别地,若X,Y相互独立,则D(X \pm Y) = D(X) + D(Y) - $D(X) = 0$的充要条件是X以概率1取常数$E(X)$,即
P\{X = E(X)\} = 1
3. 协方差
定义:Cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}
计算公式:Cov(X,Y) = E(XY) - E(X)E(Y)
性质:
- $Cov(X,Y) = Cov(Y,X)$(对称性)
- $Cov(X,C) = 0$(C为常数)
Cov(X,X) = D(X)- $Cov(aX, bY) = ab \cdot Cov(X,Y)$,a,b是常数
- $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$(双线性)
- 若X,Y相互独立,则
Cov(X,Y)=0
与方差的关系:
D(X + Y) = D(X) + D(Y) + 2Cov(X,Y)
4. 相关系数
定义:
\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}
性质:
|\rho_{XY}| \leq 1- $|\rho_{XY}| = 1$的充要条件是,存在常数a,b使$P{Y = a + bX} = 1$(线性关系)
- 若X,Y相互独立,则$\rho_{XY} = 0$(不相关)
- 不相关 ≠ 独立:$\rho_{XY} = 0$只说明X,Y没有线性关系,可能有非线性关系
不相关的等价条件(以下四条等价):
\rho_{XY} = 0Cov(X,Y) = 0E(XY) = E(X)E(Y)D(X + Y) = D(X) + D(Y)
5. 矩
定义:设X和Y是随机变量
| 矩的类型 | 定义 | 说明 |
|---|---|---|
| k阶原点矩 | $E(X^k)$,k = 1,2,... |
一阶原点矩就是期望E(X) |
| k阶中心矩 | $E{[X - E(X)]^k}$,k = 2,3,... |
二阶中心矩就是方差D(X) |
| k+l阶混合矩 | $E(X^k Y^l)$,k,l = 1,2,... |
|
| k+l阶混合中心矩 | E\{[X-E(X)]^k[Y-E(Y)]^l\} |
二阶混合中心矩就是协方差Cov(X,Y) |
6. 切比雪夫不等式
设$E(X)=\mu$,$D(X)=\sigma^2$存在,则对任意$\varepsilon>0$,
P\{|X-\mu| \ge \varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}
等价地,
P\{|X-\mu| < \varepsilon\} \ge 1 - \frac{\sigma^2}{\varepsilon^2}
7. 数字特征典型例题
例:设随机变量$X \sim N(\mu, \sigma^2)$,$Y \sim N(\mu, \sigma^2)$,且设X,Y相互独立,求$Z_1 = \alpha X + \beta Y$和$Z_2 = \alpha X - \beta Y$的相关系数(其中$\alpha, \beta$是不为零的常数)。
解:由于$X, Y \sim N(\mu, \sigma^2)$,可得
E(X) = E(Y) = \mu, \quad D(X) = D(Y) = \sigma^2
$Z_1$和$Z_2$的相关系数:
\rho_{Z_1Z_2} = \frac{E(Z_1Z_2) - E(Z_1) \cdot E(Z_2)}{\sqrt{D(Z_1)} \cdot \sqrt{D(Z_2)}}
由E(Z_1) = E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y) = (\alpha + \beta)\mu
E(Z_2) = E(\alpha X - \beta Y) = \alpha E(X) - \beta E(Y) = (\alpha - \beta)\mu
又E(Z_1Z_2) = E[(\alpha X + \beta Y)(\alpha X - \beta Y)] = E(\alpha^2 X^2 - \beta^2 Y^2) = \alpha^2 E(X^2) - \beta^2 E(Y^2)
= (\alpha^2 - \beta^2)(\sigma^2 + \mu^2)
D(Z_1) = D(\alpha X + \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2
D(Z_2) = D(\alpha X - \beta Y) = \alpha^2 D(X) + \beta^2 D(Y) = (\alpha^2 + \beta^2)\sigma^2
于是
\rho_{Z_1Z_2} = \frac{(\alpha^2 - \beta^2)(\sigma^2 + \mu^2) - (\alpha + \beta)\mu(\alpha - \beta)\mu}{\sqrt{(\alpha^2 + \beta^2)\sigma^2} \cdot \sqrt{(\alpha^2 + \beta^2)\sigma^2}} = \frac{(\alpha^2 - \beta^2)\sigma^2}{(\alpha^2 + \beta^2)\sigma^2} = \frac{\alpha^2 - \beta^2}{\alpha^2 + \beta^2}