feat: initial vllm-npu-plugin for Ascend NPU adaptation

- NPUPlatform: device management, HCCL process group, config adaptation
- AscendAttentionBackend: npu_fusion_attention (prefill) + npu_incre_flash_attention (decode)
- NPUCommunicator: HCCL-based distributed communication
- NPUWorker: NPU device init, memory profiling
- Custom ops: SiluAndMul, RMS norm, rotary embedding
- Plugin registered via vllm.platform_plugins entry point

Based on vllm-ascend official pattern, targeting Ascend 910B
This commit is contained in:
2026-02-10 11:06:01 +08:00
commit e75504df72
15 changed files with 1344 additions and 0 deletions

View File

@@ -0,0 +1,76 @@
"""
NPUCommunicator — HCCL-based device communicator for Ascend NPU.
Extends ``DeviceCommunicatorBase`` with NPU-specific collective
operations using the HCCL backend.
"""
from typing import List, Optional
import torch
import torch.distributed as dist
from vllm.distributed.device_communicators.base_device_communicator import (
DeviceCommunicatorBase,
)
class NPUCommunicator(DeviceCommunicatorBase):
"""Device communicator for Ascend NPU using HCCL."""
def __init__(
self,
cpu_group: dist.ProcessGroup,
device: Optional[torch.device] = None,
device_group: Optional[dist.ProcessGroup] = None,
unique_name: str = "",
):
super().__init__(cpu_group, device, device_group, unique_name)
import torch_npu # noqa: F401
self.device = torch.npu.current_device()
def all_to_all(
self,
input_: torch.Tensor,
scatter_dim: int = 0,
gather_dim: int = -1,
scatter_sizes: Optional[List[int]] = None,
gather_sizes: Optional[List[int]] = None,
) -> torch.Tensor:
"""All-to-all communication for NPU tensors."""
if scatter_dim < 0:
scatter_dim += input_.dim()
if gather_dim < 0:
gather_dim += input_.dim()
if scatter_sizes is not None and gather_sizes is not None:
input_list = [
t.contiguous()
for t in torch.split(input_, scatter_sizes, scatter_dim)
]
output_list = []
tensor_shape_base = input_list[self.rank].size()
for i in range(self.world_size):
tensor_shape = list(tensor_shape_base)
tensor_shape[gather_dim] = gather_sizes[i]
output_list.append(
torch.empty(
tensor_shape,
dtype=input_.dtype,
device=input_.device,
)
)
else:
input_list = [
t.contiguous()
for t in torch.tensor_split(
input_, self.world_size, scatter_dim
)
]
output_list = [
torch.empty_like(input_list[i])
for i in range(self.world_size)
]
dist.all_to_all(output_list, input_list, group=self.device_group)
output_tensor = torch.cat(output_list, dim=gather_dim).contiguous()
return output_tensor