mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 11:42:30 +00:00
- NPUPlatform: device management, HCCL process group, config adaptation - AscendAttentionBackend: npu_fusion_attention (prefill) + npu_incre_flash_attention (decode) - NPUCommunicator: HCCL-based distributed communication - NPUWorker: NPU device init, memory profiling - Custom ops: SiluAndMul, RMS norm, rotary embedding - Plugin registered via vllm.platform_plugins entry point Based on vllm-ascend official pattern, targeting Ascend 910B
77 lines
2.4 KiB
Python
77 lines
2.4 KiB
Python
"""
|
|
NPUCommunicator — HCCL-based device communicator for Ascend NPU.
|
|
|
|
Extends ``DeviceCommunicatorBase`` with NPU-specific collective
|
|
operations using the HCCL backend.
|
|
"""
|
|
|
|
from typing import List, Optional
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from vllm.distributed.device_communicators.base_device_communicator import (
|
|
DeviceCommunicatorBase,
|
|
)
|
|
|
|
|
|
class NPUCommunicator(DeviceCommunicatorBase):
|
|
"""Device communicator for Ascend NPU using HCCL."""
|
|
|
|
def __init__(
|
|
self,
|
|
cpu_group: dist.ProcessGroup,
|
|
device: Optional[torch.device] = None,
|
|
device_group: Optional[dist.ProcessGroup] = None,
|
|
unique_name: str = "",
|
|
):
|
|
super().__init__(cpu_group, device, device_group, unique_name)
|
|
import torch_npu # noqa: F401
|
|
self.device = torch.npu.current_device()
|
|
|
|
def all_to_all(
|
|
self,
|
|
input_: torch.Tensor,
|
|
scatter_dim: int = 0,
|
|
gather_dim: int = -1,
|
|
scatter_sizes: Optional[List[int]] = None,
|
|
gather_sizes: Optional[List[int]] = None,
|
|
) -> torch.Tensor:
|
|
"""All-to-all communication for NPU tensors."""
|
|
if scatter_dim < 0:
|
|
scatter_dim += input_.dim()
|
|
if gather_dim < 0:
|
|
gather_dim += input_.dim()
|
|
|
|
if scatter_sizes is not None and gather_sizes is not None:
|
|
input_list = [
|
|
t.contiguous()
|
|
for t in torch.split(input_, scatter_sizes, scatter_dim)
|
|
]
|
|
output_list = []
|
|
tensor_shape_base = input_list[self.rank].size()
|
|
for i in range(self.world_size):
|
|
tensor_shape = list(tensor_shape_base)
|
|
tensor_shape[gather_dim] = gather_sizes[i]
|
|
output_list.append(
|
|
torch.empty(
|
|
tensor_shape,
|
|
dtype=input_.dtype,
|
|
device=input_.device,
|
|
)
|
|
)
|
|
else:
|
|
input_list = [
|
|
t.contiguous()
|
|
for t in torch.tensor_split(
|
|
input_, self.world_size, scatter_dim
|
|
)
|
|
]
|
|
output_list = [
|
|
torch.empty_like(input_list[i])
|
|
for i in range(self.world_size)
|
|
]
|
|
|
|
dist.all_to_all(output_list, input_list, group=self.device_group)
|
|
output_tensor = torch.cat(output_list, dim=gather_dim).contiguous()
|
|
return output_tensor
|