This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,50 @@
import itertools
from collections.abc import Sequence
from typing import TYPE_CHECKING, Union
import torch
from vllm.logger import init_logger
from vllm.v1.sample import logits_processor
from vllm.v1.sample.logits_processor.builtin import (LogitBiasLogitsProcessor,
MinTokensLogitsProcessor)
from vllm.v1.sample.logits_processor.interface import LogitsProcessor
from vllm.v1.sample.logits_processor.state import LogitsProcessors
from vllm_npu.sample.logits_processor.builtin import \
AscendMinPLogitsProcessor
if TYPE_CHECKING:
from vllm.config import VllmConfig
logger = init_logger(__name__)
# Error message when the user tries to initialize vLLM with a pooling model
# and custom logitsproces
STR_POOLING_REJECTS_LOGITSPROCS = ("Pooling models do not support custom"
" logits processors.")
BUILTIN_LOGITS_PROCESSORS: list[type[LogitsProcessor]] = [
MinTokensLogitsProcessor,
LogitBiasLogitsProcessor,
AscendMinPLogitsProcessor,
]
def build_logitsprocs(
vllm_config: "VllmConfig",
device: torch.device,
is_pin_memory: bool,
is_pooling_model: bool,
custom_logitsprocs: Sequence[Union[str, type[LogitsProcessor]]] = (),
) -> LogitsProcessors:
if is_pooling_model:
if custom_logitsprocs:
raise ValueError(STR_POOLING_REJECTS_LOGITSPROCS)
logger.debug("Skipping logits processor loading because pooling models"
" do not support logits processors.")
return LogitsProcessors()
custom_logitsprocs_classes = logits_processor._load_custom_logitsprocs(
custom_logitsprocs)
return LogitsProcessors(
ctor(vllm_config, device, is_pin_memory) for ctor in itertools.chain(
BUILTIN_LOGITS_PROCESSORS, custom_logitsprocs_classes))

View File

@@ -0,0 +1,35 @@
import torch
from vllm.config import VllmConfig
from vllm.v1.sample.logits_processor import MinPLogitsProcessor
class AscendMinPLogitsProcessor(MinPLogitsProcessor):
def __init__(self, vllm_config: "VllmConfig", device: torch.device,
is_pin_memory: bool):
super().__init__(vllm_config, device, is_pin_memory)
decode_max_num_seqs = getattr(vllm_config.scheduler_config,
'decode_max_num_seqs', 0)
if decode_max_num_seqs != 0:
max_num_reqs = max(vllm_config.scheduler_config.max_num_seqs,
decode_max_num_seqs)
self.min_p_count: int = 0
self.min_p_cpu_tensor = torch.zeros((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=is_pin_memory)
self.min_p_cpu = self.min_p_cpu_tensor.numpy()
self.use_double_tensor = torch.device(device).type != "cpu"
if self.use_double_tensor:
# Pre-allocated device tensor
self.min_p_device: torch.Tensor = torch.empty(
(max_num_reqs, ), dtype=torch.float32, device=device)
else:
self.min_p_device = self.min_p_cpu_tensor
# Current slice of the device tensor
self.min_p: torch.Tensor = self.min_p_device[:0]