mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
36 lines
1.5 KiB
Python
36 lines
1.5 KiB
Python
import torch
|
|
from vllm.config import VllmConfig
|
|
from vllm.v1.sample.logits_processor import MinPLogitsProcessor
|
|
|
|
|
|
class AscendMinPLogitsProcessor(MinPLogitsProcessor):
|
|
|
|
def __init__(self, vllm_config: "VllmConfig", device: torch.device,
|
|
is_pin_memory: bool):
|
|
super().__init__(vllm_config, device, is_pin_memory)
|
|
|
|
decode_max_num_seqs = getattr(vllm_config.scheduler_config,
|
|
'decode_max_num_seqs', 0)
|
|
if decode_max_num_seqs != 0:
|
|
max_num_reqs = max(vllm_config.scheduler_config.max_num_seqs,
|
|
decode_max_num_seqs)
|
|
|
|
self.min_p_count: int = 0
|
|
|
|
self.min_p_cpu_tensor = torch.zeros((max_num_reqs, ),
|
|
dtype=torch.float32,
|
|
device="cpu",
|
|
pin_memory=is_pin_memory)
|
|
self.min_p_cpu = self.min_p_cpu_tensor.numpy()
|
|
|
|
self.use_double_tensor = torch.device(device).type != "cpu"
|
|
|
|
if self.use_double_tensor:
|
|
# Pre-allocated device tensor
|
|
self.min_p_device: torch.Tensor = torch.empty(
|
|
(max_num_reqs, ), dtype=torch.float32, device=device)
|
|
else:
|
|
self.min_p_device = self.min_p_cpu_tensor
|
|
# Current slice of the device tensor
|
|
self.min_p: torch.Tensor = self.min_p_device[:0]
|