This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -0,0 +1,37 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from vllm.triton_utils import HAS_TRITON
if HAS_TRITON:
import vllm_npu.patch.worker.patch_triton
# isort: off
import vllm_npu.patch.platform.patch_sched_yield # noqa
import vllm_npu.patch.worker.patch_distributed # noqa
import vllm_npu.patch.worker.patch_logits # noqa
import vllm_npu.patch.worker.patch_roberta # noqa
import vllm_npu.patch.worker.patch_weight_loader # noqa
import vllm_npu.patch.worker.patch_multimodal_merge # noqa
import vllm_npu.patch.worker.patch_minicpm # noqa
import vllm_npu.patch.worker.patch_deepseek_mtp # noqa
import vllm_npu.patch.worker.patch_attention_layer # noqa
if os.getenv("SHM_BARRIER", "true") == "true":
import vllm_npu.patch.platform.patch_message_queue # noqa

View File

@@ -0,0 +1,92 @@
from typing import Optional
import torch
import vllm
from vllm.forward_context import ForwardContext, get_forward_context
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
# For some alternate attention backends like MLA the attention output
# shape does not match the query shape, so we optionally let the model
# definition specify the output tensor shape.
output_shape: Optional[torch.Size] = None,
) -> torch.Tensor:
"""
The KV cache is stored inside this class and is accessed via
`self.kv_cache`.
Attention metadata (`attn_metadata`) is set using a context manager in
the model runner's `execute_model` method. It is accessed via forward
context using
`vllm.forward_context.get_forward_context().attn_metadata`.
"""
if self.calculate_kv_scales:
attn_metadata = get_forward_context().attn_metadata
if attn_metadata.enable_kv_scales_calculation:
self.calc_kv_scales(query, key, value)
output_dtype = query.dtype
if self.query_quant is not None:
# quantizing with a simple torch operation enables
# torch.compile to fuse this into previous ops
# which reduces overheads during decoding.
# Otherwise queries are quantized using custom ops
# which causes decoding overheads
assert self.kv_cache_dtype in {"fp8", "fp8_e4m3"}
query, _ = self.query_quant(query, self._q_scale)
if self.use_output:
output_shape = (output_shape
if output_shape is not None else query.shape)
output = torch.empty(output_shape,
dtype=output_dtype,
device=query.device)
hidden_size = output_shape[-1]
# We skip reshaping query, key and value tensors for the MLA
# backend since these tensors have different semantics and are
# processed differently.
if not self.use_mla:
# Reshape the query, key, and value tensors.
# NOTE(woosuk): We do this outside the custom op to minimize the
# CPU overheads from the non-CUDA-graph regions.
query = query.view(-1, self.num_heads, self.head_size)
output = output.view(-1, self.num_heads, self.head_size)
if key is not None:
key = key.view(-1, self.num_kv_heads, self.head_size)
if value is not None:
value = value.view(-1, self.num_kv_heads, self.head_size)
if self.use_direct_call:
forward_context: ForwardContext = get_forward_context()
attn_metadata = forward_context.attn_metadata
if isinstance(attn_metadata, dict):
attn_metadata = attn_metadata[self.layer_name]
self_kv_cache = self.kv_cache[forward_context.virtual_engine]
self.impl.forward(self,
query,
key,
value,
self_kv_cache,
attn_metadata,
output=output)
else:
torch.ops.vllm.unified_attention_with_output(
query, key, value, output, self.layer_name)
return output.view(-1, hidden_size)
else:
if self.use_direct_call:
forward_context = get_forward_context()
attn_metadata = forward_context.attn_metadata
if isinstance(attn_metadata, dict):
attn_metadata = attn_metadata[self.layer_name]
self_kv_cache = self.kv_cache[forward_context.virtual_engine]
return self.impl.forward(self, query, key, value, self_kv_cache,
attn_metadata)
else:
return torch.ops.vllm.unified_attention(query, key, value,
self.layer_name)
vllm.attention.layer.Attention.forward = forward

View File

@@ -0,0 +1,94 @@
from typing import Optional
import torch
import torch.nn as nn
import vllm
from transformers import PretrainedConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.deepseek_mtp import (
DeepSeekMTP, DeepSeekMultiTokenPredictorLayer)
from vllm.model_executor.models.deepseek_v2 import DeepseekV2DecoderLayer
from vllm.model_executor.models.utils import maybe_prefix
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_index: int = 0,
) -> torch.Tensor:
assert inputs_embeds is not None
# masking inputs at position 0, as not needed by MTP
# Patch this for aclgraph support, as the original operation introduced d2h sync,
# which breaks aclgraph
inputs_embeds = torch.where(positions.unsqueeze(-1) == 0, 0, inputs_embeds)
inputs_embeds = self.enorm(inputs_embeds)
previous_hidden_states = self.hnorm(previous_hidden_states)
hidden_states = self.eh_proj(
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
hidden_states, residual = self.mtp_block(positions=positions,
hidden_states=hidden_states,
residual=None)
hidden_states = residual + hidden_states
return hidden_states
# Patch this only for aclgraph support, as this is not support in vLLM 0.11.0
@support_torch_compile
class AscendDeepSeekMTP(DeepSeekMTP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
class SharedHead(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
quant_config: QuantizationConfig = None,
) -> None:
super().__init__()
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "head"),
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(hidden_states)
def predictor_init(self, vllm_config: VllmConfig, prefix: str) -> None:
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = nn.Linear(config.hidden_size * 2,
config.hidden_size,
bias=False)
# We don't need topk_indices_buffer in Ascend
topk_indices_buffer = None
self.shared_head = SharedHead(config=config,
prefix=prefix,
quant_config=quant_config)
self.mtp_block = DeepseekV2DecoderLayer(vllm_config, prefix,
topk_indices_buffer)
DeepSeekMultiTokenPredictorLayer.__init__ = predictor_init
vllm.model_executor.models.deepseek_mtp.DeepSeekMultiTokenPredictorLayer.forward = forward

View File

@@ -0,0 +1,115 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Optional, Union
import torch
import vllm
from torch.distributed import Backend
from vllm.distributed.parallel_state import (GroupCoordinator,
_get_unique_name, _register_group)
from vllm_npu.distributed.communicator import NPUCommunicator
from vllm_npu.utils import create_hccl_pg_options
class GroupCoordinatorPatch(GroupCoordinator):
def __init__(
self,
group_ranks: list[list[int]],
local_rank: int,
torch_distributed_backend: Union[str, Backend],
use_device_communicator: bool, # whether to use device communicator
use_message_queue_broadcaster: bool = False,
group_name: Optional[str] = None,
):
group_name = group_name or "anonymous"
self.unique_name = _get_unique_name(group_name)
_register_group(self)
self.rank = torch.distributed.get_rank()
self.local_rank = local_rank
self_device_group = None
self_cpu_group = None
hccl_pg_options = create_hccl_pg_options(group_name)
for ranks in group_ranks:
device_group = torch.distributed.new_group(
ranks,
backend=torch_distributed_backend,
pg_options=hccl_pg_options)
# a group with `gloo` backend, to allow direct coordination between
# processes through the CPU.
cpu_group = torch.distributed.new_group(ranks, backend="gloo")
if self.rank in ranks:
self.ranks = ranks
self.world_size = len(ranks)
self.rank_in_group = ranks.index(self.rank)
self_device_group = device_group
self_cpu_group = cpu_group
assert self_cpu_group is not None
assert self_device_group is not None
self.cpu_group = self_cpu_group
self.device_group = self_device_group
self.device = torch.npu.current_device()
self.use_device_communicator = use_device_communicator
self.device_communicator = None
if use_device_communicator and self.world_size > 1:
self.device_communicator = NPUCommunicator(
cpu_group=self.cpu_group,
device=self.device,
device_group=self.device_group,
unique_name=self.unique_name,
)
from vllm.distributed.device_communicators.shm_broadcast import \
MessageQueue
self.mq_broadcaster: Optional[MessageQueue] = None
if use_message_queue_broadcaster and self.world_size > 1:
self.mq_broadcaster = MessageQueue.create_from_process_group(
self.cpu_group, 1 << 22, 6)
self.use_custom_op_call = False
self.use_cpu_custom_send_recv = False
def all_to_all(self,
input_: torch.Tensor,
scatter_dim: int = 0,
gather_dim: int = -1,
scatter_sizes: Optional[List[int]] = None,
gather_sizes: Optional[List[int]] = None) -> torch.Tensor:
if self.world_size == 1:
return input_
assert -input_.dim() <= scatter_dim < input_.dim(), (
f"Invalid scatter dim ({scatter_dim}) for input tensor with shape {input_.size()}"
)
assert -input_.dim() <= gather_dim < input_.dim(), (
f"Invalid gather dim ({gather_dim}) for input tensor with shape {input_.size()}"
)
assert self.device_communicator is not None, "device_communicator should be initialized when world_size > 1"
return self.device_communicator.all_to_all(input_, scatter_dim,
gather_dim, scatter_sizes,
gather_sizes)
vllm.distributed.parallel_state.GroupCoordinator = GroupCoordinatorPatch

View File

@@ -0,0 +1,26 @@
import torch
import vllm
from vllm._custom_ops import apply_repetition_penalties_torch
def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor,
output_mask: torch.Tensor,
repetition_penalties: torch.Tensor) -> None:
"""Apply repetition penalties to logits in-place.
Args:
logits: The logits tensor of shape [num_seqs, vocab_size].
prompt_mask: A boolean tensor indicating which tokens appear in the prompt.
output_mask: A boolean tensor indicating which tokens appear in the output.
repetition_penalties: The repetition penalties of shape (num_seqs, ).
"""
apply_repetition_penalties_torch(logits, prompt_mask, output_mask,
repetition_penalties)
# NPU device type tensors have attributes is_cuda=True and is_npu=True, according to its implementation in
# https://github.com/Ascend/pytorch/blob/863b9071cbdf47023c12c246e3efa9c6e2285fc6/torch_npu/npu/_stream_check.py#L74
# This causes that vLLM's apply_repetition_penalties function will run into the branch of "if logits.is_cuda" and
# call the custom op implemented in CUDA, which is not compatible with NPU.
# Reference: https://github.com/vllm-project/vllm/blob/f66673a39d9f364194c249f28098cad8a5584ccb/vllm/_custom_ops.py#L314
vllm._custom_ops.apply_repetition_penalties = apply_repetition_penalties

View File

@@ -0,0 +1,36 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from vllm.model_executor.models.minicpm import MiniCPMAttention
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
# The type conversion in the forward function is deleted to support the rope operator.
MiniCPMAttention.forward = forward

View File

@@ -0,0 +1,58 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
import torch
import vllm
from vllm.model_executor.models.utils import (_embedding_count_expression,
_flatten_embeddings)
from vllm.multimodal import NestedTensors
def _merge_multimodal_embeddings(
inputs_embeds: torch.Tensor,
is_multimodal: torch.Tensor,
multimodal_embeddings: NestedTensors,
) -> torch.Tensor:
"""
Merge ``multimodal_embeddings`` into ``inputs_embeds`` by overwriting the
positions in ``inputs_embeds`` corresponding to placeholder tokens in
``input_ids``.
Note:
This updates ``inputs_embeds`` in place.
"""
flattened = _flatten_embeddings(multimodal_embeddings)
try:
inputs_embeds[is_multimodal] = flattened
except RuntimeError as e:
num_expected_tokens = is_multimodal.sum().item()
assert isinstance(num_expected_tokens, int)
if flattened.shape[0] != num_expected_tokens:
expr = _embedding_count_expression(multimodal_embeddings)
raise ValueError(
f"Attempted to assign {expr} = {flattened.shape[0]} "
f"multimodal tokens to {num_expected_tokens} placeholders"
) from e
else:
raise ValueError("Error during masked scatter operation") from e
return inputs_embeds
vllm.model_executor.models.utils._merge_multimodal_embeddings = _merge_multimodal_embeddings

View File

@@ -0,0 +1,88 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Optional
import torch
from vllm.model_executor.models.roberta import (
RobertaEmbedding, RobertaForSequenceClassification,
replace_roberta_positions)
from vllm.sequence import IntermediateTensors
# aclgraph does not support shift operator for now
# TODO: revert me when aclgraph supports shift operator
TOKEN_TYPE_SHIFT = 30
TOKEN_TYPE_MULTIPLIER = 1 << 30
TOKEN_MASK = TOKEN_TYPE_MULTIPLIER - 1
def _encode_token_type_ids(input_ids: torch.Tensor,
token_type_ids: torch.Tensor) -> None:
# input_ids can be padded to the right
input_ids[:token_type_ids.shape[0]].bitwise_or_(token_type_ids *
TOKEN_TYPE_MULTIPLIER)
def _decode_token_type_ids(input_ids: torch.Tensor) -> torch.Tensor:
token_type_ids = input_ids // TOKEN_TYPE_MULTIPLIER
input_ids.bitwise_and_(TOKEN_MASK)
return token_type_ids
def roberta_for_sequence_classification_forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
) -> torch.Tensor:
replace_roberta_positions(input_ids=input_ids,
position_ids=positions,
padding_idx=self.padding_idx)
if token_type_ids is not None:
assert self.roberta.config.vocab_size < (1 << TOKEN_TYPE_SHIFT)
assert input_ids is not None
_encode_token_type_ids(input_ids, token_type_ids)
return self.roberta(input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
intermediate_tensors=intermediate_tensors)
def roberta_embedding_forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
) -> torch.Tensor:
token_type_ids = _decode_token_type_ids(input_ids)
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings + position_embeddings
embeddings = self.LayerNorm(embeddings)
return embeddings
RobertaEmbedding.forward = roberta_embedding_forward
RobertaForSequenceClassification.forward = roberta_for_sequence_classification_forward

View File

@@ -0,0 +1,16 @@
import vllm.model_executor.layers.fla.ops.chunk
import vllm.model_executor.layers.fla.ops.fused_recurrent
import vllm.model_executor.layers.fla.ops.layernorm_guard
import vllm.model_executor.layers.mamba.ops.causal_conv1d
from vllm_npu.ops.casual_conv1d import (causal_conv1d_fn,
causal_conv1d_update_npu)
from vllm_npu.ops.fla import LayerNormFn, torch_chunk_gated_delta_rule
from vllm_npu.ops.sigmoid_gating import \
fused_recurrent_gated_delta_rule_fwd_kernel
vllm.model_executor.layers.mamba.ops.causal_conv1d.causal_conv1d_update = causal_conv1d_update_npu
vllm.model_executor.layers.mamba.ops.causal_conv1d.causal_conv1d_fn = causal_conv1d_fn
vllm.model_executor.layers.fla.ops.fused_recurrent.fused_recurrent_gated_delta_rule_fwd_kernel = fused_recurrent_gated_delta_rule_fwd_kernel
vllm.model_executor.layers.fla.ops.layernorm_guard.LayerNormFn = LayerNormFn
vllm.model_executor.layers.fla.ops.chunk.chunk_gated_delta_rule = torch_chunk_gated_delta_rule

View File

@@ -0,0 +1,41 @@
import torch
from torch.nn.parameter import Parameter
from vllm.logger import init_logger
from vllm.model_executor.layers.linear import UnquantizedLinearMethod
from vllm.model_executor.utils import set_weight_attrs
from vllm.utils import GiB_bytes
logger = init_logger(__name__)
def create_weights(self, layer: torch.nn.Module, input_size_per_partition: int,
output_partition_sizes: list[int], input_size: int,
output_size: int, params_dtype: torch.dtype,
**extra_weight_attrs):
# This method creates unquantized linear weights.
# The weights are not quantized, and they are not sharded.
# The amount of memory allocated for the weights is
# sum(output_partition_sizes) * input_size_per_partition.
try:
weight = Parameter(torch.empty(sum(output_partition_sizes),
input_size_per_partition,
dtype=params_dtype),
requires_grad=False)
except torch.cuda.OutOfMemoryError as e:
logger.error("Failed to create unquantized linear weights: %s", e)
if torch.cuda.is_available():
logger.debug("CUDA device: %s", torch.cuda.current_device())
logger.debug("Allocated: %.2f GiB",
torch.cuda.memory_allocated() / GiB_bytes)
logger.debug("Reserved: %.2f GiB",
torch.cuda.memory_reserved() / GiB_bytes)
raise RuntimeError(
"Failed to create unquantized linear weights. "
"This may be caused by insufficient memory to allocate "
"the weight.") from e
set_weight_attrs(weight, {"input_dim": 1, "output_dim": 0})
layer.register_parameter("weight", weight)
set_weight_attrs(weight, extra_weight_attrs)
UnquantizedLinearMethod.create_weights = create_weights