Files
vllm-npu-plugin/vllm_npu/patch/worker/patch_distributed.py
2026-02-10 23:08:39 +08:00

116 lines
4.5 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import List, Optional, Union
import torch
import vllm
from torch.distributed import Backend
from vllm.distributed.parallel_state import (GroupCoordinator,
_get_unique_name, _register_group)
from vllm_npu.distributed.communicator import NPUCommunicator
from vllm_npu.utils import create_hccl_pg_options
class GroupCoordinatorPatch(GroupCoordinator):
def __init__(
self,
group_ranks: list[list[int]],
local_rank: int,
torch_distributed_backend: Union[str, Backend],
use_device_communicator: bool, # whether to use device communicator
use_message_queue_broadcaster: bool = False,
group_name: Optional[str] = None,
):
group_name = group_name or "anonymous"
self.unique_name = _get_unique_name(group_name)
_register_group(self)
self.rank = torch.distributed.get_rank()
self.local_rank = local_rank
self_device_group = None
self_cpu_group = None
hccl_pg_options = create_hccl_pg_options(group_name)
for ranks in group_ranks:
device_group = torch.distributed.new_group(
ranks,
backend=torch_distributed_backend,
pg_options=hccl_pg_options)
# a group with `gloo` backend, to allow direct coordination between
# processes through the CPU.
cpu_group = torch.distributed.new_group(ranks, backend="gloo")
if self.rank in ranks:
self.ranks = ranks
self.world_size = len(ranks)
self.rank_in_group = ranks.index(self.rank)
self_device_group = device_group
self_cpu_group = cpu_group
assert self_cpu_group is not None
assert self_device_group is not None
self.cpu_group = self_cpu_group
self.device_group = self_device_group
self.device = torch.npu.current_device()
self.use_device_communicator = use_device_communicator
self.device_communicator = None
if use_device_communicator and self.world_size > 1:
self.device_communicator = NPUCommunicator(
cpu_group=self.cpu_group,
device=self.device,
device_group=self.device_group,
unique_name=self.unique_name,
)
from vllm.distributed.device_communicators.shm_broadcast import \
MessageQueue
self.mq_broadcaster: Optional[MessageQueue] = None
if use_message_queue_broadcaster and self.world_size > 1:
self.mq_broadcaster = MessageQueue.create_from_process_group(
self.cpu_group, 1 << 22, 6)
self.use_custom_op_call = False
self.use_cpu_custom_send_recv = False
def all_to_all(self,
input_: torch.Tensor,
scatter_dim: int = 0,
gather_dim: int = -1,
scatter_sizes: Optional[List[int]] = None,
gather_sizes: Optional[List[int]] = None) -> torch.Tensor:
if self.world_size == 1:
return input_
assert -input_.dim() <= scatter_dim < input_.dim(), (
f"Invalid scatter dim ({scatter_dim}) for input tensor with shape {input_.size()}"
)
assert -input_.dim() <= gather_dim < input_.dim(), (
f"Invalid gather dim ({gather_dim}) for input tensor with shape {input_.size()}"
)
assert self.device_communicator is not None, "device_communicator should be initialized when world_size > 1"
return self.device_communicator.all_to_all(input_, scatter_dim,
gather_dim, scatter_sizes,
gather_sizes)
vllm.distributed.parallel_state.GroupCoordinator = GroupCoordinatorPatch