This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

77
vllm_npu/eplb/utils.py Normal file
View File

@@ -0,0 +1,77 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
# Todo: Once https://github.com/vllm-project/vllm/pull/23553 is merged in vllm. Remove this model register.
import types
import torch
def get_expert_map(self, layer_id):
return self.model.layers[layer_id].mlp.experts.get_map()
def get_log2phy_map(self, layer_id):
return self.model.layers[layer_id].mlp.experts.get_log2phy_map()
def get_all_expert_map(self, num_moe_layers):
all_loads = []
num_dense_layers = self.num_dense_layers if hasattr(
self, "num_dense_layers") else 0
for layer_id in range(num_moe_layers):
load_tensor = self.get_expert_map(
layer_id + num_dense_layers) # (num_experts_per_layer,)
all_loads.append(load_tensor)
return torch.stack(all_loads, dim=0)
def get_all_moe_loads(self):
num_dense_layers = self.num_dense_layers if hasattr(
self, "num_dense_layers") else 0
all_moe_loads = torch.stack(
[self.model.layers[layer_id + num_dense_layers].mlp.experts.moe_load \
for layer_id in range(self.num_moe_layers)],
dim=0
)
return all_moe_loads
def clear_all_moe_loads(self):
num_dense_layers = self.num_dense_layers if hasattr(
self, "num_dense_layers") else 0
for layer_id in range(self.num_moe_layers):
self.model.layers[layer_id +
num_dense_layers].mlp.experts.clear_moe_load()
def model_register(model, model_config):
model.get_expert_map = types.MethodType(get_expert_map, model)
model.get_log2phy_map = types.MethodType(get_log2phy_map, model)
model.get_all_expert_map = types.MethodType(get_all_expert_map, model)
model.get_all_moe_loads = types.MethodType(get_all_moe_loads, model)
model.clear_all_moe_loads = types.MethodType(clear_all_moe_loads, model)
config = model_config.hf_config
if config.model_type == "qwen3_moe":
model.num_moe_layers = config.num_hidden_layers
elif config.model_type == "deepseek_v2" or config.model_type == "deepseek_v3":
model.num_dense_layers = config.first_k_dense_replace
model.num_moe_layers = config.num_hidden_layers - model.num_dense_layers
else:
raise NotImplementedError("EPLB is not supported.")