mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
77
vllm_npu/eplb/utils.py
Normal file
77
vllm_npu/eplb/utils.py
Normal file
@@ -0,0 +1,77 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/23553 is merged in vllm. Remove this model register.
|
||||
import types
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def get_expert_map(self, layer_id):
|
||||
return self.model.layers[layer_id].mlp.experts.get_map()
|
||||
|
||||
|
||||
def get_log2phy_map(self, layer_id):
|
||||
return self.model.layers[layer_id].mlp.experts.get_log2phy_map()
|
||||
|
||||
|
||||
def get_all_expert_map(self, num_moe_layers):
|
||||
all_loads = []
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
for layer_id in range(num_moe_layers):
|
||||
load_tensor = self.get_expert_map(
|
||||
layer_id + num_dense_layers) # (num_experts_per_layer,)
|
||||
all_loads.append(load_tensor)
|
||||
|
||||
return torch.stack(all_loads, dim=0)
|
||||
|
||||
|
||||
def get_all_moe_loads(self):
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
all_moe_loads = torch.stack(
|
||||
[self.model.layers[layer_id + num_dense_layers].mlp.experts.moe_load \
|
||||
for layer_id in range(self.num_moe_layers)],
|
||||
dim=0
|
||||
)
|
||||
return all_moe_loads
|
||||
|
||||
|
||||
def clear_all_moe_loads(self):
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
for layer_id in range(self.num_moe_layers):
|
||||
self.model.layers[layer_id +
|
||||
num_dense_layers].mlp.experts.clear_moe_load()
|
||||
|
||||
|
||||
def model_register(model, model_config):
|
||||
model.get_expert_map = types.MethodType(get_expert_map, model)
|
||||
model.get_log2phy_map = types.MethodType(get_log2phy_map, model)
|
||||
model.get_all_expert_map = types.MethodType(get_all_expert_map, model)
|
||||
model.get_all_moe_loads = types.MethodType(get_all_moe_loads, model)
|
||||
model.clear_all_moe_loads = types.MethodType(clear_all_moe_loads, model)
|
||||
|
||||
config = model_config.hf_config
|
||||
|
||||
if config.model_type == "qwen3_moe":
|
||||
model.num_moe_layers = config.num_hidden_layers
|
||||
elif config.model_type == "deepseek_v2" or config.model_type == "deepseek_v3":
|
||||
model.num_dense_layers = config.first_k_dense_replace
|
||||
model.num_moe_layers = config.num_hidden_layers - model.num_dense_layers
|
||||
else:
|
||||
raise NotImplementedError("EPLB is not supported.")
|
||||
Reference in New Issue
Block a user