mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 11:42:30 +00:00
78 lines
2.8 KiB
Python
78 lines
2.8 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Todo: Once https://github.com/vllm-project/vllm/pull/23553 is merged in vllm. Remove this model register.
|
|
import types
|
|
|
|
import torch
|
|
|
|
|
|
def get_expert_map(self, layer_id):
|
|
return self.model.layers[layer_id].mlp.experts.get_map()
|
|
|
|
|
|
def get_log2phy_map(self, layer_id):
|
|
return self.model.layers[layer_id].mlp.experts.get_log2phy_map()
|
|
|
|
|
|
def get_all_expert_map(self, num_moe_layers):
|
|
all_loads = []
|
|
num_dense_layers = self.num_dense_layers if hasattr(
|
|
self, "num_dense_layers") else 0
|
|
for layer_id in range(num_moe_layers):
|
|
load_tensor = self.get_expert_map(
|
|
layer_id + num_dense_layers) # (num_experts_per_layer,)
|
|
all_loads.append(load_tensor)
|
|
|
|
return torch.stack(all_loads, dim=0)
|
|
|
|
|
|
def get_all_moe_loads(self):
|
|
num_dense_layers = self.num_dense_layers if hasattr(
|
|
self, "num_dense_layers") else 0
|
|
all_moe_loads = torch.stack(
|
|
[self.model.layers[layer_id + num_dense_layers].mlp.experts.moe_load \
|
|
for layer_id in range(self.num_moe_layers)],
|
|
dim=0
|
|
)
|
|
return all_moe_loads
|
|
|
|
|
|
def clear_all_moe_loads(self):
|
|
num_dense_layers = self.num_dense_layers if hasattr(
|
|
self, "num_dense_layers") else 0
|
|
for layer_id in range(self.num_moe_layers):
|
|
self.model.layers[layer_id +
|
|
num_dense_layers].mlp.experts.clear_moe_load()
|
|
|
|
|
|
def model_register(model, model_config):
|
|
model.get_expert_map = types.MethodType(get_expert_map, model)
|
|
model.get_log2phy_map = types.MethodType(get_log2phy_map, model)
|
|
model.get_all_expert_map = types.MethodType(get_all_expert_map, model)
|
|
model.get_all_moe_loads = types.MethodType(get_all_moe_loads, model)
|
|
model.clear_all_moe_loads = types.MethodType(clear_all_moe_loads, model)
|
|
|
|
config = model_config.hf_config
|
|
|
|
if config.model_type == "qwen3_moe":
|
|
model.num_moe_layers = config.num_hidden_layers
|
|
elif config.model_type == "deepseek_v2" or config.model_type == "deepseek_v3":
|
|
model.num_dense_layers = config.first_k_dense_replace
|
|
model.num_moe_layers = config.num_hidden_layers - model.num_dense_layers
|
|
else:
|
|
raise NotImplementedError("EPLB is not supported.")
|