mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
大改
This commit is contained in:
0
vllm_npu/eplb/__init__.py
Normal file
0
vllm_npu/eplb/__init__.py
Normal file
0
vllm_npu/eplb/adaptor/__init__.py
Normal file
0
vllm_npu/eplb/adaptor/__init__.py
Normal file
44
vllm_npu/eplb/adaptor/abstract_adaptor.py
Normal file
44
vllm_npu/eplb/adaptor/abstract_adaptor.py
Normal file
@@ -0,0 +1,44 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove this adaptor.
|
||||
from abc import abstractmethod
|
||||
from typing import Any
|
||||
|
||||
|
||||
class EplbAdaptor():
|
||||
|
||||
def __init__(self, **args):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_rank_expert_workload(self):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def get_init_expert_map(self, num_moe_layers: Any) -> Any:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def do_update_expert_map(self, layer_id: Any,
|
||||
updated_expert_map: Any) -> Any:
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def do_update_expert_weight(self, layer_id: Any,
|
||||
local_expert_to_replace: Any,
|
||||
buffer_tensor_id: Any) -> Any:
|
||||
raise NotImplementedError
|
||||
289
vllm_npu/eplb/adaptor/vllm_adaptor.py
Normal file
289
vllm_npu/eplb/adaptor/vllm_adaptor.py
Normal file
@@ -0,0 +1,289 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove this adaptor.
|
||||
import json
|
||||
from typing import Any
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from vllm.logger import logger
|
||||
|
||||
from vllm_npu.ascend_config import get_ascend_config
|
||||
from vllm_npu.eplb.adaptor.abstract_adaptor import EplbAdaptor
|
||||
|
||||
|
||||
class VllmEplbAdaptor(EplbAdaptor):
|
||||
|
||||
def __init__(self, model, **args):
|
||||
super().__init__(**args)
|
||||
self.model = model
|
||||
self.rank_id = dist.get_rank()
|
||||
self.world_size = dist.get_world_size()
|
||||
self.param_dict = dict(self.model.named_parameters())
|
||||
if self.model.config.model_type == "qwen3_moe":
|
||||
self.num_dense_layers = 0
|
||||
self.global_expert_num = self.model.config.num_experts
|
||||
else:
|
||||
self.num_dense_layers = self.model.config.first_k_dense_replace
|
||||
self.global_expert_num = self.model.config.n_routed_experts
|
||||
self.num_moe_layers = self.model.config.num_hidden_layers - self.num_dense_layers
|
||||
self.init_redundancy_expert = get_ascend_config(
|
||||
).init_redundancy_expert
|
||||
|
||||
# TODO: init self.expert_weight_names depending on different model types, only deepseek v3 w8a8 and qwen3-moe is supported here
|
||||
if self.model.quant_config is not None:
|
||||
self.expert_weight_names = [
|
||||
"w13_weight", "w2_weight", "w13_weight_scale",
|
||||
"w13_weight_offset", "w2_weight_scale", "w2_weight_offset"
|
||||
]
|
||||
else:
|
||||
self.expert_weight_names = ["w13_weight", "w2_weight"]
|
||||
|
||||
self.expert_map_per_layer = dict(
|
||||
) # reference to expert map on device for expert map update
|
||||
self.expert_map_per_layer_cpu = dict(
|
||||
) # copy of expert map on CPU to avoid device synchronize frequently
|
||||
for layer_idx in range(self.num_moe_layers):
|
||||
self.expert_map_per_layer[self.num_dense_layers + layer_idx] = \
|
||||
self.model.get_expert_map(self.num_dense_layers + layer_idx)
|
||||
|
||||
# TODO: here we set number of buffer tensor equal to number of expert in each laryer, which can be improved
|
||||
num_buffer_tensor = torch.where(
|
||||
self.expert_map_per_layer[self.num_dense_layers] != -1)[0].numel()
|
||||
self.buffer_tensor_list: list[list[Any]] = [
|
||||
[] for _ in range(num_buffer_tensor)
|
||||
]
|
||||
self.init_buffer_tensor(num_buffer_tensor)
|
||||
|
||||
self.expert_param_per_layer = dict()
|
||||
self.init_expert_param_per_layer()
|
||||
|
||||
self.log2phy_map_per_layer = dict()
|
||||
for layer_idx in range(self.num_moe_layers):
|
||||
self.log2phy_map_per_layer[self.num_dense_layers + layer_idx] = \
|
||||
self.model.get_log2phy_map(self.num_dense_layers + layer_idx)
|
||||
|
||||
self.all_topk_ids = []
|
||||
|
||||
def init_buffer_tensor(self, num_buffer_tensor):
|
||||
for buffer_id in range(num_buffer_tensor):
|
||||
for name in self.expert_weight_names:
|
||||
complete_name = "model.layers." + str(
|
||||
self.num_dense_layers) + ".mlp.experts." + name
|
||||
expert_tensor = self.param_dict[complete_name].data[0]
|
||||
if name in ["w13_weight", "w2_weight"]:
|
||||
expert_tensor = expert_tensor.clone()
|
||||
buffer_tensor = torch.empty_like(expert_tensor)
|
||||
self.buffer_tensor_list[buffer_id].append(buffer_tensor)
|
||||
|
||||
def init_expert_param_per_layer(self):
|
||||
num_local_expert = self.param_dict["model.layers." + str(self.num_dense_layers) + \
|
||||
".mlp.experts." + self.expert_weight_names[0]].data.shape[0]
|
||||
for moe_layer_id in range(self.num_moe_layers):
|
||||
layer_idx = self.num_dense_layers + moe_layer_id
|
||||
self.expert_param_per_layer[layer_idx] = list()
|
||||
for local_expert_id in range(num_local_expert):
|
||||
self.expert_param_per_layer[layer_idx].append([
|
||||
self.param_dict["model.layers." + str(layer_idx) +
|
||||
".mlp.experts." +
|
||||
name].data[local_expert_id]
|
||||
for name in self.expert_weight_names
|
||||
])
|
||||
|
||||
def get_rank_expert_workload(self) -> torch.Tensor:
|
||||
self.moe_load = self.model.get_all_moe_loads()
|
||||
return self.moe_load
|
||||
|
||||
def get_init_expert_map(self, num_moe_layers):
|
||||
expert_map = self.model.get_all_expert_map(num_moe_layers)
|
||||
if dist.is_initialized():
|
||||
world_size = dist.get_world_size()
|
||||
|
||||
gathered = torch.empty(
|
||||
(world_size, *expert_map.shape), # [W, L, E]
|
||||
dtype=expert_map.dtype,
|
||||
device=expert_map.device)
|
||||
|
||||
dist.all_gather_into_tensor(gathered, expert_map)
|
||||
all_maps = gathered.permute(1, 0, 2)
|
||||
all_expert_maps = all_maps.cpu()
|
||||
|
||||
for layer_idx in range(num_moe_layers):
|
||||
self.expert_map_per_layer_cpu[self.num_dense_layers + layer_idx] = \
|
||||
all_expert_maps[layer_idx][self.rank_id]
|
||||
|
||||
return all_expert_maps
|
||||
|
||||
def get_init_expert_map_from_file(self, num_moe_layers, expert_map_path):
|
||||
|
||||
try:
|
||||
expert_map_tensor, layers_num, ranks_num = self._expert_file_to_tensor(
|
||||
expert_map_path)
|
||||
expert_map_all = self.local2global(expert_map_tensor)
|
||||
except (TypeError, FileNotFoundError, OSError):
|
||||
expert_map_all = self.determine_expert_map_all()
|
||||
|
||||
for layer_idx in range(num_moe_layers):
|
||||
if self.model.config.model_type == "qwen3_moe":
|
||||
self.expert_map_per_layer_cpu[layer_idx] = \
|
||||
expert_map_all[layer_idx][self.rank_id]
|
||||
else:
|
||||
self.expert_map_per_layer_cpu[layer_idx + self.num_dense_layers] = \
|
||||
expert_map_all[layer_idx][self.rank_id]
|
||||
return expert_map_all
|
||||
|
||||
def _expert_file_to_tensor(self, expert_map_path: str):
|
||||
with open(expert_map_path, "r") as f:
|
||||
data = json.load(f)
|
||||
layers_num = data["moe_layer_count"]
|
||||
gpus_num = data["layer_list"][0]["device_count"]
|
||||
|
||||
tensor_data = []
|
||||
for layer in data["layer_list"]:
|
||||
device_data = []
|
||||
for device in layer["device_list"]:
|
||||
device_data.append(device["device_expert"])
|
||||
tensor_data.append(device_data)
|
||||
expert_map_tensor = torch.tensor(tensor_data, dtype=torch.int32)
|
||||
return expert_map_tensor, layers_num, gpus_num
|
||||
logger.error(f"failed to read expert_map_path: {expert_map_path}")
|
||||
|
||||
def _export_tensor_to_file(self, expert_maps, expert_map_record_path: str):
|
||||
if self.rank_id == 0:
|
||||
num_local_experts = expert_maps.max() + 1
|
||||
expert_maps_local = self.global2local(expert_maps,
|
||||
num_local_experts)
|
||||
|
||||
expert_maps_list = expert_maps_local.tolist()
|
||||
record: dict[str, Any] = {
|
||||
"moe_layer_count": len(expert_maps_list),
|
||||
"layer_list": []
|
||||
}
|
||||
|
||||
for layer_idx, layer_data in enumerate(expert_maps_list):
|
||||
layer_record: dict[str, Any] = {
|
||||
"layer_id": layer_idx,
|
||||
"device_count": len(layer_data),
|
||||
"device_list": []
|
||||
}
|
||||
|
||||
for device_idx, experts in enumerate(layer_data):
|
||||
device_record = {
|
||||
"device_id": device_idx,
|
||||
"device_expert": experts
|
||||
}
|
||||
layer_record["device_list"].append(device_record)
|
||||
|
||||
record["layer_list"].append(layer_record)
|
||||
|
||||
with open(expert_map_record_path, "w") as f:
|
||||
json.dump(record, f, indent=4)
|
||||
|
||||
def do_update_expert_map(self, layer_id, updated_expert_map):
|
||||
self.expert_map_per_layer[layer_id].copy_(updated_expert_map)
|
||||
self.expert_map_per_layer_cpu[layer_id].copy_(updated_expert_map)
|
||||
|
||||
def do_update_expert_weight(self, layer_id, local_expert_to_replace,
|
||||
buffer_tensor_id):
|
||||
for expert_tensor, buffer_tensor in zip(
|
||||
self.expert_param_per_layer[layer_id][local_expert_to_replace],
|
||||
self.buffer_tensor_list[buffer_tensor_id]):
|
||||
expert_tensor.copy_(buffer_tensor)
|
||||
logger.debug(f"Expert tensor shape is :{expert_tensor.shape}")
|
||||
|
||||
def do_update_log2phy_map(self, layer_id, updated_log2phy_map):
|
||||
if self.log2phy_map_per_layer[layer_id] is not None:
|
||||
self.log2phy_map_per_layer[layer_id].copy_(updated_log2phy_map)
|
||||
|
||||
def global2local(self, placement: torch.Tensor,
|
||||
E_local: int) -> torch.Tensor:
|
||||
|
||||
L, G, _ = placement.shape
|
||||
device = placement.device
|
||||
|
||||
pt_local = torch.full((L, G, E_local),
|
||||
fill_value=-1,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
valid = placement >= 0
|
||||
l_idx, g_idx, k_idx = valid.nonzero(as_tuple=True)
|
||||
|
||||
slot_idx = placement[l_idx, g_idx, k_idx]
|
||||
|
||||
pt_local[l_idx, g_idx, slot_idx] = k_idx
|
||||
|
||||
return pt_local
|
||||
|
||||
def local2global(self, placement_local: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
L, G, E_local = placement_local.shape
|
||||
device = placement_local.device
|
||||
|
||||
max_id = torch.max(placement_local)
|
||||
E_global = (max_id + 1).item() if max_id >= 0 else 0
|
||||
|
||||
if E_global == 0:
|
||||
return torch.empty((L, G, 0), dtype=torch.long, device=device)
|
||||
|
||||
placement_global = torch.full((L, G, E_global),
|
||||
fill_value=-1,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
valid = placement_local >= 0
|
||||
l_idx, g_idx, slot_idx = valid.nonzero(as_tuple=True)
|
||||
gid_idx = placement_local[l_idx, g_idx, slot_idx]
|
||||
|
||||
placement_global[l_idx, g_idx, gid_idx] = slot_idx
|
||||
|
||||
return placement_global
|
||||
|
||||
def determine_expert_map_all(self):
|
||||
if self.world_size == 1:
|
||||
local_ids = torch.arange(self.global_expert_num, dtype=torch.int32)
|
||||
return local_ids.view(1, 1, -1).expand(self.num_moe_layers, 1, -1)
|
||||
|
||||
local_num_experts = self.global_expert_num // self.world_size
|
||||
|
||||
expert_map_all = torch.full(
|
||||
(self.num_moe_layers, self.world_size, self.global_expert_num),
|
||||
-1,
|
||||
dtype=torch.int32)
|
||||
|
||||
for r in range(self.world_size):
|
||||
if r < self.world_size - 1:
|
||||
start = r * local_num_experts
|
||||
end = (r + 1) * local_num_experts
|
||||
local_count = local_num_experts
|
||||
else:
|
||||
start = r * local_num_experts
|
||||
end = self.global_expert_num
|
||||
local_count = self.global_expert_num - r * local_num_experts
|
||||
|
||||
if r < self.init_redundancy_expert:
|
||||
local_count += 1
|
||||
if end < self.global_expert_num:
|
||||
end += 1
|
||||
else:
|
||||
start -= 1
|
||||
|
||||
local_ids = torch.arange(local_count, dtype=torch.int32)
|
||||
expert_map_all[:, r, start:end] = local_ids.unsqueeze(0).expand(
|
||||
self.num_moe_layers, -1)
|
||||
|
||||
return expert_map_all
|
||||
0
vllm_npu/eplb/core/__init__.py
Normal file
0
vllm_npu/eplb/core/__init__.py
Normal file
134
vllm_npu/eplb/core/eplb_device_transfer_loader.py
Normal file
134
vllm_npu/eplb/core/eplb_device_transfer_loader.py
Normal file
@@ -0,0 +1,134 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
from enum import Enum
|
||||
|
||||
import torch.distributed as dist
|
||||
from vllm.logger import logger
|
||||
|
||||
|
||||
class ExpertWeightUpdateState(Enum):
|
||||
WAITING = 0 # waiting for updated expert_map by EplbWorker
|
||||
READY = 1 # ready for d2d expert weights updating
|
||||
TRANSFERRING = 2 # d2d finished and waiting for updating expert_map into model
|
||||
|
||||
|
||||
class D2DExpertWeightLoader:
|
||||
|
||||
def __init__(self):
|
||||
self.comm_op_list = None
|
||||
self.updated_expert_map = None
|
||||
self.updated_log2phy_map = None
|
||||
self.layer_id = -1 # layer id to be updated
|
||||
self.state = ExpertWeightUpdateState.WAITING
|
||||
self.recv_expert_list = []
|
||||
self.mock_flag = True
|
||||
|
||||
def set_adator(self, eplb_adaptor):
|
||||
self.eplb_adaptor = eplb_adaptor
|
||||
|
||||
def generate_expert_d2d_transfer_task(self, expert_send_info,
|
||||
expert_recv_info, updated_expert_map,
|
||||
layer_id):
|
||||
# When current send/recv and weight.expert_map update tasks are not finished, cannot accept new d2d task
|
||||
if self.state != ExpertWeightUpdateState.WAITING:
|
||||
logger.warning_once(
|
||||
"current d2d weight update tasks are on-going, cannot accept new weight update task"
|
||||
)
|
||||
return
|
||||
|
||||
self.updated_expert_map = updated_expert_map
|
||||
|
||||
self.layer_id = layer_id
|
||||
self.comm_op_list = []
|
||||
for send_info in expert_send_info:
|
||||
dst_rank, global_expert_id_to_send = send_info
|
||||
local_expert_id = self.eplb_adaptor.expert_map_per_layer_cpu[
|
||||
layer_id][global_expert_id_to_send].item()
|
||||
for src_tensor in self.eplb_adaptor.expert_param_per_layer[
|
||||
layer_id][local_expert_id]:
|
||||
src_tensor = src_tensor.clone()
|
||||
self.comm_op_list.append(
|
||||
dist.P2POp(dist.isend, src_tensor, dst_rank))
|
||||
|
||||
buffer_tensor_id = 0
|
||||
for recv_info in expert_recv_info:
|
||||
recv_rank, global_expert_id_to_recv = recv_info
|
||||
for buffer_tensor in self.eplb_adaptor.buffer_tensor_list[
|
||||
buffer_tensor_id]:
|
||||
self.comm_op_list.append(
|
||||
dist.P2POp(dist.irecv, buffer_tensor, recv_rank))
|
||||
local_expert_to_replace = self.updated_expert_map[
|
||||
global_expert_id_to_recv].item()
|
||||
self.recv_expert_list.append(
|
||||
(local_expert_to_replace, buffer_tensor_id))
|
||||
buffer_tensor_id += 1
|
||||
|
||||
self.state = ExpertWeightUpdateState.READY
|
||||
|
||||
def set_log2phy_map(self, log2phy_map):
|
||||
self.updated_log2phy_map = log2phy_map
|
||||
|
||||
def asyn_expert_weight_transfer(self, reqs):
|
||||
# Only when send/recv tasks are parsed into self.comm_op_list, d2d send/recv tasks can be luanched
|
||||
if self.state != ExpertWeightUpdateState.READY:
|
||||
return
|
||||
|
||||
# set asynchronous stream for d2d expert weight transfer
|
||||
if self.comm_op_list:
|
||||
ret_list = dist.batch_isend_irecv(self.comm_op_list)
|
||||
reqs.extend(ret_list)
|
||||
|
||||
self.state = ExpertWeightUpdateState.TRANSFERRING
|
||||
|
||||
def update_expert_map_and_weight(self, reqs):
|
||||
# Only after send/recv tasks have been luanched, expert_map and weight can be updated
|
||||
if self.state != ExpertWeightUpdateState.TRANSFERRING:
|
||||
return
|
||||
|
||||
# Waiting for send/recv tasks finish
|
||||
for req in reqs:
|
||||
req.wait()
|
||||
|
||||
if self.comm_op_list is not None:
|
||||
self.comm_op_list = None
|
||||
|
||||
# update expert_map
|
||||
self.eplb_adaptor.do_update_expert_map(self.layer_id,
|
||||
self.updated_expert_map)
|
||||
|
||||
# update log2phy_map
|
||||
self.eplb_adaptor.do_update_log2phy_map(self.layer_id,
|
||||
self.updated_log2phy_map)
|
||||
|
||||
# update expert weight
|
||||
buffer_tensor_id = 0
|
||||
for recv_expert_info in self.recv_expert_list:
|
||||
local_expert_to_replace, buffer_tensor_id = recv_expert_info
|
||||
self.eplb_adaptor.do_update_expert_weight(self.layer_id,
|
||||
local_expert_to_replace,
|
||||
buffer_tensor_id)
|
||||
|
||||
logger.info(
|
||||
f"[EPLB] finished update expert weight for layer: {self.layer_id}")
|
||||
|
||||
self.recv_expert_list = []
|
||||
self.updated_expert_map = None
|
||||
self.layer_id = -1
|
||||
self.state = ExpertWeightUpdateState.WAITING
|
||||
|
||||
def load_impl(self, old_expert_table, new_expert_table):
|
||||
raise NotImplementedError
|
||||
189
vllm_npu/eplb/core/eplb_utils.py
Normal file
189
vllm_npu/eplb/core/eplb_utils.py
Normal file
@@ -0,0 +1,189 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove eplb utils.
|
||||
import os.path
|
||||
import random
|
||||
import sys
|
||||
|
||||
import torch
|
||||
from vllm.logger import logger
|
||||
|
||||
|
||||
def determine_default_expert_map(global_expert_num, world_size, rank_id,
|
||||
global_redundant_expert_num):
|
||||
if world_size == 1:
|
||||
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
|
||||
return (global_expert_num, local_ids)
|
||||
|
||||
local_num_experts = global_expert_num // world_size
|
||||
|
||||
expert_map = torch.full((global_expert_num, ), -1, dtype=torch.int32)
|
||||
|
||||
if rank_id < world_size - 1:
|
||||
start = rank_id * local_num_experts
|
||||
end = (rank_id + 1) * local_num_experts
|
||||
local_count = local_num_experts
|
||||
else:
|
||||
start = rank_id * local_num_experts
|
||||
end = global_expert_num
|
||||
local_count = global_expert_num - rank_id * local_num_experts
|
||||
|
||||
if isinstance(local_count, int):
|
||||
local_ids = torch.arange(local_count, dtype=torch.int32)
|
||||
expert_map[start:end] = local_ids
|
||||
|
||||
return (local_count, expert_map)
|
||||
|
||||
|
||||
def generate_log2phy_map(expert_map):
|
||||
num_local_experts = expert_map.max() + 1
|
||||
log2phy_map = expert_map.clone()
|
||||
num_ranks, num_global_expert = log2phy_map.shape
|
||||
|
||||
row_indices = torch.arange(num_ranks).view(-1, 1).expand(num_ranks, \
|
||||
num_global_expert) * num_local_experts
|
||||
log2phy_map[log2phy_map != -1] += row_indices[log2phy_map != -1]
|
||||
|
||||
for idx in range(num_global_expert):
|
||||
positive_rank_idx = torch.where(log2phy_map[:, idx] != -1)[0]
|
||||
negative_rank_idx = torch.where(log2phy_map[:, idx] == -1)[0]
|
||||
num_rank_holding_expert = positive_rank_idx.size(0)
|
||||
|
||||
if num_rank_holding_expert == 0:
|
||||
log2phy_map[:, idx] = torch.full((num_ranks, ),
|
||||
0,
|
||||
dtype=log2phy_map.dtype)
|
||||
|
||||
if num_rank_holding_expert == 1:
|
||||
log2phy_map[negative_rank_idx, idx] = torch.full(
|
||||
(num_ranks - 1, ),
|
||||
log2phy_map[positive_rank_idx, idx].item(),
|
||||
dtype=log2phy_map.dtype)
|
||||
else:
|
||||
try:
|
||||
random_list = [
|
||||
random.choice(log2phy_map[positive_rank_idx, idx])
|
||||
for _ in range(num_ranks - num_rank_holding_expert)
|
||||
]
|
||||
log2phy_map[negative_rank_idx,
|
||||
idx] = torch.tensor(random_list,
|
||||
dtype=log2phy_map.dtype)
|
||||
except Exception as e:
|
||||
logger.error(f"Fail to get log2phy_map: {str(e)}")
|
||||
|
||||
return log2phy_map
|
||||
|
||||
|
||||
def determine_default_log2phy_map(global_expert_num, world_size, rank_id):
|
||||
if world_size == 1:
|
||||
local_ids = torch.arange(global_expert_num, dtype=torch.int32)
|
||||
expert_map_all = local_ids.unsqueeze(0).expand(world_size, -1)
|
||||
log2phy_map_all = generate_log2phy_map(expert_map_all)
|
||||
return log2phy_map_all[rank_id]
|
||||
|
||||
local_num_experts = global_expert_num // world_size
|
||||
|
||||
expert_map_all = torch.full((world_size, global_expert_num),
|
||||
-1,
|
||||
dtype=torch.int32)
|
||||
|
||||
for r in range(world_size):
|
||||
if r < world_size - 1:
|
||||
start = r * local_num_experts
|
||||
end = (r + 1) * local_num_experts
|
||||
local_count = local_num_experts
|
||||
else:
|
||||
start = r * local_num_experts
|
||||
end = global_expert_num
|
||||
local_count = global_expert_num - r * local_num_experts
|
||||
|
||||
if isinstance(local_count, int):
|
||||
local_ids = torch.arange(local_count, dtype=torch.int32)
|
||||
expert_map_all[r, start:end] = local_ids
|
||||
|
||||
log2phy_map_all = generate_log2phy_map(expert_map_all)
|
||||
|
||||
return log2phy_map_all[rank_id]
|
||||
|
||||
|
||||
class EPLBParamUtils:
|
||||
|
||||
@staticmethod
|
||||
def check_iterations(iterations):
|
||||
if not isinstance(iterations, int):
|
||||
raise TypeError(f"The {iterations} is not int.")
|
||||
if iterations <= 0:
|
||||
raise ValueError(
|
||||
f"The {iterations} can not less than or equal to 0.")
|
||||
if iterations > sys.maxsize:
|
||||
raise ValueError(
|
||||
f"The {iterations} can not large than {sys.maxsize}")
|
||||
|
||||
@staticmethod
|
||||
def check_dynamic_eplb(dynamic_eplb):
|
||||
if dynamic_eplb is None:
|
||||
return
|
||||
if not isinstance(dynamic_eplb, bool):
|
||||
raise TypeError("The dynamic_eplb is not bool.")
|
||||
if dynamic_eplb and os.getenv("DYNAMIC_EPLB", "false") != "true":
|
||||
raise ValueError(
|
||||
'Can not enable dynamic_eplb when not export DYNAMIC_EPLB="true".'
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def check_expert_map_path(expert_map):
|
||||
if expert_map is None:
|
||||
return
|
||||
if not isinstance(expert_map, str):
|
||||
raise TypeError("The expert_map is not str.")
|
||||
if not expert_map.strip():
|
||||
raise ValueError("The expert_map is not empty.")
|
||||
_, ext = os.path.splitext(expert_map)
|
||||
if ext.lower() != ".json":
|
||||
raise TypeError("The expert_map is not json.")
|
||||
if not os.path.exists(expert_map):
|
||||
raise ValueError("The expert_map is not exist.")
|
||||
try:
|
||||
with open(expert_map, "w", encoding='utf-8') as f:
|
||||
f.read()
|
||||
except Exception as e:
|
||||
raise IOError(
|
||||
f"Fail read expert info from {expert_map}, please check the reading permission of {expert_map} : {e}"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def check_expert_map_record_path(expert_map_record_path):
|
||||
if expert_map_record_path is None:
|
||||
return
|
||||
if not isinstance(expert_map_record_path, str):
|
||||
raise TypeError("The expert_map_record_path is not str.")
|
||||
if not expert_map_record_path.strip():
|
||||
raise ValueError("The expert_map_record_path is empty.")
|
||||
_, ext = os.path.splitext(expert_map_record_path)
|
||||
if ext.lower() != ".json":
|
||||
raise TypeError("The expert_map_record_path is not json.")
|
||||
if os.getenv("EXPERT_MAP_RECORD", "false") != "true":
|
||||
raise ValueError(
|
||||
'Can not enable expert_map_record_path when not export EXPERT_MAP_RECORD="true".'
|
||||
)
|
||||
try:
|
||||
with open(expert_map_record_path, "w", encoding='utf-8') as f:
|
||||
f.write("")
|
||||
except Exception as e:
|
||||
raise IOError(
|
||||
f"Fail write expert info to {expert_map_record_path}, please check the writing permission of {expert_map_record_path} : {e}"
|
||||
)
|
||||
440
vllm_npu/eplb/core/eplb_worker.py
Normal file
440
vllm_npu/eplb/core/eplb_worker.py
Normal file
@@ -0,0 +1,440 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
from multiprocessing import Process, Queue
|
||||
from typing import Any
|
||||
|
||||
import networkx as nx # type: ignore
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from vllm.logger import logger
|
||||
|
||||
from vllm_npu.eplb.core.eplb_utils import generate_log2phy_map
|
||||
from vllm_npu.eplb.core.policy.policy_factory import (DynamicConfig,
|
||||
PolicyFactory)
|
||||
|
||||
|
||||
class EplbWorker:
|
||||
|
||||
def __init__(self, shared_dict, policy_type, enable_d2d: bool = True):
|
||||
self.policy_type = policy_type
|
||||
self.policy = PolicyFactory.generate_policy(policy_type,
|
||||
DynamicConfig())
|
||||
self.shared_dict = shared_dict
|
||||
self.old_expert_maps = None
|
||||
self.enable_d2d = enable_d2d
|
||||
self.rank_id = dist.get_rank()
|
||||
|
||||
def do_update(self):
|
||||
# put data in to queue
|
||||
# in process self.policy.generate_policy()
|
||||
# get epxert table && tensor
|
||||
|
||||
# async stream
|
||||
# D2D
|
||||
# H2D
|
||||
# Get initial expert_map
|
||||
torch.set_num_threads(1)
|
||||
if self.old_expert_maps is None:
|
||||
self.old_expert_maps = self.get_init_expert_maps()
|
||||
if self.old_expert_maps is not None:
|
||||
self.num_local_experts = self.old_expert_maps.max() + 1
|
||||
else:
|
||||
raise ValueError("Failed to get expert_maps from shared_dict.")
|
||||
|
||||
# Get MOE load information
|
||||
load_info = self.fetch_and_sum_load_info()
|
||||
if load_info is None:
|
||||
return
|
||||
|
||||
# Get the updated expert table based on the workload information
|
||||
old_placement = self.global2local(self.old_expert_maps,
|
||||
self.num_local_experts)
|
||||
_, _, new_placement = self.calculate_rebalance_experts(
|
||||
load_info, old_placement)
|
||||
|
||||
if not torch.is_tensor(new_placement):
|
||||
new_placement = torch.tensor(new_placement)
|
||||
self.check_expert_placement(old_placement, new_placement)
|
||||
new_expert_maps = self.local2global(new_placement)
|
||||
self.update_expert_map(new_expert_maps)
|
||||
|
||||
if self.policy_type == 2:
|
||||
update_info = self.compose_expert_update_info_bipartite(
|
||||
new_expert_maps, self.old_expert_maps)
|
||||
else:
|
||||
update_info = self.compose_expert_update_info_greedy(
|
||||
new_expert_maps, self.old_expert_maps)
|
||||
self.old_expert_maps = new_expert_maps
|
||||
logger.info("EPLB Process compute complete")
|
||||
|
||||
packed_update_info = self.pack_update_info(update_info)
|
||||
|
||||
return packed_update_info
|
||||
|
||||
def check_expert_placement(self, old_placement, new_placement):
|
||||
num_layers = old_placement.shape[0]
|
||||
num_ranks = old_placement.shape[1]
|
||||
|
||||
for layer_id in range(num_layers):
|
||||
# check if any logical expert is not placed on any rank
|
||||
if torch.unique(new_placement[layer_id]).numel() < torch.unique(
|
||||
old_placement[layer_id]).numel():
|
||||
logger.error(
|
||||
f"There exists expert not placed on any rank in layer {layer_id}"
|
||||
)
|
||||
new_placement[layer_id] = old_placement[layer_id]
|
||||
continue
|
||||
|
||||
for rank_id in range(num_ranks):
|
||||
new_placement_check = new_placement[layer_id][rank_id]
|
||||
old_placement_check = old_placement[layer_id][rank_id]
|
||||
|
||||
# check if same logical experts are placed on the same NPU
|
||||
if new_placement_check.numel() != torch.unique(
|
||||
new_placement_check).numel():
|
||||
logger.error(
|
||||
f"Replicated experts are placed on the same NPU, expert placement on layer {layer_id}, rank {rank_id} is invalid"
|
||||
)
|
||||
new_placement[layer_id] = old_placement[layer_id]
|
||||
break
|
||||
|
||||
# check if there is any experts movement inside one NPU
|
||||
expert_not_move = torch.isin(new_placement_check,
|
||||
old_placement_check)
|
||||
if not torch.equal(new_placement_check[expert_not_move],
|
||||
old_placement_check[expert_not_move]):
|
||||
logger.error(
|
||||
f"There exists expert movement inside NPU, expert placement on layer {layer_id}, rank {rank_id} is invalid"
|
||||
)
|
||||
new_placement[layer_id] = old_placement[layer_id]
|
||||
break
|
||||
|
||||
def compose_expert_update_info_bipartite(self, updated_expert_maps_org,
|
||||
current_expert_maps_org):
|
||||
# transform numpy array to torch tensor
|
||||
updated_expert_maps = updated_expert_maps_org.clone()
|
||||
current_expert_maps = current_expert_maps_org.clone()
|
||||
updated_expert_maps = np.array(updated_expert_maps)
|
||||
current_expert_maps = np.array(current_expert_maps)
|
||||
|
||||
num_layers = current_expert_maps.shape[0]
|
||||
|
||||
for layer_id in range(num_layers):
|
||||
updated_expert_maps_this_layer = updated_expert_maps[layer_id]
|
||||
current_expert_maps_this_layer = current_expert_maps[layer_id]
|
||||
updated_expert_maps_this_layer_org = updated_expert_maps_org[
|
||||
layer_id]
|
||||
|
||||
from typing import Any
|
||||
|
||||
expert_send_info_this_layer: dict[Any, Any] = {}
|
||||
expert_recv_info_this_layer: dict[Any, Any] = {}
|
||||
|
||||
# Guard Clause: if there is no expert weight update, avoid subsequent processing
|
||||
if (np.equal(updated_expert_maps_this_layer,
|
||||
current_expert_maps_this_layer)).all():
|
||||
yield (expert_send_info_this_layer,
|
||||
expert_recv_info_this_layer,
|
||||
updated_expert_maps_this_layer_org, layer_id)
|
||||
|
||||
# Parse expert_ids each rank needs to receive from other ranks
|
||||
dst_rank_indices, experts_to_recv = np.where(
|
||||
(current_expert_maps_this_layer == -1)
|
||||
& (updated_expert_maps_this_layer != -1))
|
||||
|
||||
# record src ranks for potential transfer
|
||||
src_ranks_set = dict()
|
||||
for idx in range(len(dst_rank_indices)):
|
||||
expert_id = experts_to_recv[idx].item()
|
||||
if expert_id not in src_ranks_set:
|
||||
src_ranks_set[expert_id] = np.where(
|
||||
current_expert_maps_this_layer[:, expert_id] != -1)[0]
|
||||
|
||||
# loop until all experts are scheduled
|
||||
while len(dst_rank_indices) > 0:
|
||||
# construct bipartite graph
|
||||
graph_expert_update: nx.Graph = nx.Graph()
|
||||
for idx in range(len(dst_rank_indices)):
|
||||
dst_rank_id = dst_rank_indices[idx].item()
|
||||
expert_id = experts_to_recv[idx].item()
|
||||
# add src ranks
|
||||
src_rank_ids = src_ranks_set[expert_id]
|
||||
graph_expert_update.add_nodes_from(src_rank_ids,
|
||||
bipartite=0)
|
||||
# add dest rank
|
||||
graph_expert_update.add_node(str(dst_rank_id), bipartite=1)
|
||||
# add edges
|
||||
for src_rank_id in src_rank_ids:
|
||||
graph_expert_update.add_edge(src_rank_id,
|
||||
str(dst_rank_id))
|
||||
|
||||
# graph may not be connected
|
||||
connected_components = list(
|
||||
nx.connected_components(graph_expert_update))
|
||||
all_matches = {}
|
||||
# matching in this loop
|
||||
for i, component in enumerate(connected_components):
|
||||
subgraph = graph_expert_update.subgraph(component)
|
||||
component_matching = nx.bipartite.maximum_matching(
|
||||
subgraph)
|
||||
all_matches.update(component_matching)
|
||||
|
||||
for src_rank, dst_rank in all_matches.items():
|
||||
dst_rank = int(dst_rank)
|
||||
assert src_rank != dst_rank
|
||||
if graph_expert_update.nodes[src_rank]['bipartite'] == 0:
|
||||
# currently not scheduled experts in rank dst_rank
|
||||
experts_v = experts_to_recv[np.where(
|
||||
dst_rank_indices == dst_rank)]
|
||||
# src: src_rank, dest: dst_rank, expert: expert_id
|
||||
expert_id = np.intersect1d(
|
||||
experts_v,
|
||||
np.where(current_expert_maps_this_layer[src_rank]
|
||||
!= -1))[0]
|
||||
|
||||
# record send/rcv pairs
|
||||
if src_rank not in expert_send_info_this_layer:
|
||||
expert_send_info_this_layer[src_rank] = []
|
||||
if dst_rank not in expert_recv_info_this_layer:
|
||||
expert_recv_info_this_layer[dst_rank] = []
|
||||
expert_send_info_this_layer[src_rank].append(
|
||||
(dst_rank, expert_id))
|
||||
expert_recv_info_this_layer[dst_rank].append(
|
||||
(src_rank, expert_id))
|
||||
|
||||
remove_index = np.where(
|
||||
np.logical_and(dst_rank_indices == dst_rank,
|
||||
experts_to_recv == expert_id))
|
||||
|
||||
# update
|
||||
dst_rank_indices = np.delete(dst_rank_indices,
|
||||
remove_index)
|
||||
experts_to_recv = np.delete(experts_to_recv,
|
||||
remove_index)
|
||||
|
||||
yield (expert_send_info_this_layer, expert_recv_info_this_layer,
|
||||
updated_expert_maps_this_layer_org, layer_id)
|
||||
|
||||
# TODO: Here only expert weight exchange is considered, need to be extended to cover other weight update cases
|
||||
def compose_expert_update_info_greedy(self, updated_expert_maps,
|
||||
current_expert_maps):
|
||||
num_layers = current_expert_maps.shape[0]
|
||||
for layer_id in range(num_layers):
|
||||
updated_expert_maps_this_layer = updated_expert_maps[layer_id]
|
||||
current_expert_maps_this_layer = current_expert_maps[layer_id]
|
||||
|
||||
expert_send_info_this_layer: dict[Any, Any] = {}
|
||||
expert_recv_info_this_layer: dict[Any, Any] = {}
|
||||
|
||||
# Guard Clause: if there is no expert weight update, avoid subsequent processing
|
||||
if torch.equal(updated_expert_maps_this_layer,
|
||||
current_expert_maps_this_layer):
|
||||
yield (expert_send_info_this_layer,
|
||||
expert_recv_info_this_layer,
|
||||
updated_expert_maps_this_layer, layer_id)
|
||||
|
||||
# Parse expert_ids each rank needs to receive from other ranks
|
||||
dst_rank_indices, experts_to_recv = torch.where((current_expert_maps_this_layer == -1) \
|
||||
& (updated_expert_maps_this_layer != -1))
|
||||
|
||||
# Parse expert_ids each rank needs to send to other ranks
|
||||
src_rank_indices, experts_to_send = torch.where((current_expert_maps_this_layer != -1) \
|
||||
& (updated_expert_maps_this_layer == -1))
|
||||
|
||||
for idx in range(len(dst_rank_indices)):
|
||||
dst_rank_id = dst_rank_indices[idx].item()
|
||||
expert_id = experts_to_recv[idx].item()
|
||||
if dst_rank_id not in expert_recv_info_this_layer:
|
||||
expert_recv_info_this_layer[dst_rank_id] = []
|
||||
|
||||
if not torch.isin(torch.tensor(expert_id),
|
||||
experts_to_send).any():
|
||||
# if expert_id are not sent out from any npu, it will be copied from one npu holding this expert
|
||||
candidate_src_rank_indices = torch.where(
|
||||
current_expert_maps_this_layer[:, expert_id] != -1)[0]
|
||||
else:
|
||||
candidate_src_rank_indices = src_rank_indices[
|
||||
experts_to_send == expert_id]
|
||||
|
||||
# TODO: improve selection criterion of npu sending expert_id considering such as intra-node or inter-node...
|
||||
src_rank_id = candidate_src_rank_indices[0].item()
|
||||
if src_rank_id not in expert_send_info_this_layer:
|
||||
expert_send_info_this_layer[src_rank_id] = []
|
||||
|
||||
expert_send_info_this_layer[src_rank_id].append(
|
||||
(dst_rank_id, expert_id))
|
||||
expert_recv_info_this_layer[dst_rank_id].append(
|
||||
(src_rank_id, expert_id))
|
||||
|
||||
yield (expert_send_info_this_layer, expert_recv_info_this_layer,
|
||||
updated_expert_maps_this_layer, layer_id)
|
||||
|
||||
def calculate_rebalance_experts(self, load_info, old_placement):
|
||||
"""
|
||||
Compute `new_map` by calling the `rebalance_experts` method of the policy instance.
|
||||
"""
|
||||
if self.old_expert_maps is None:
|
||||
return False, None, None
|
||||
|
||||
changed, priority, new_map = self.policy.rebalance_experts(
|
||||
old_placement, load_info)
|
||||
return changed, priority, new_map
|
||||
|
||||
def get_init_expert_maps(self):
|
||||
"""
|
||||
Read the initial expert_map from shared_dict.
|
||||
"""
|
||||
return self.shared_dict.get("expert_maps", None)
|
||||
|
||||
def fetch_and_sum_load_info(self):
|
||||
"""
|
||||
Each time the subprocess is awakened, read the latest moe_load
|
||||
(shape: [num_moe_layers, num_experts_per_layer]) from shared_dict.
|
||||
"""
|
||||
return self.shared_dict.get("moe_load", None)
|
||||
|
||||
def update_expert_map(self, expert_maps):
|
||||
|
||||
self.shared_dict["expert_maps"] = expert_maps
|
||||
|
||||
def global2local(self, placement: torch.Tensor,
|
||||
E_local: int) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
|
||||
L, G, _ = placement.shape
|
||||
device = placement.device
|
||||
|
||||
pt_local = torch.full((L, G, E_local),
|
||||
fill_value=-1,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
valid = placement >= 0
|
||||
l_idx, g_idx, k_idx = valid.nonzero(as_tuple=True)
|
||||
|
||||
slot_idx = placement[l_idx, g_idx, k_idx]
|
||||
|
||||
pt_local[l_idx, g_idx, slot_idx] = k_idx
|
||||
|
||||
return pt_local
|
||||
|
||||
def local2global(self, placement_local: torch.Tensor) -> torch.Tensor:
|
||||
|
||||
L, G, E_local = placement_local.shape
|
||||
device = placement_local.device
|
||||
|
||||
max_id = torch.max(placement_local)
|
||||
E_global = (max_id + 1).item() if max_id >= 0 else 0
|
||||
|
||||
if E_global == 0:
|
||||
return torch.empty((L, G, 0), dtype=torch.long, device=device)
|
||||
|
||||
placement_global = torch.full((L, G, E_global),
|
||||
fill_value=-1,
|
||||
dtype=torch.long,
|
||||
device=device)
|
||||
|
||||
valid = placement_local >= 0
|
||||
l_idx, g_idx, slot_idx = valid.nonzero(as_tuple=True)
|
||||
gid_idx = placement_local[l_idx, g_idx, slot_idx]
|
||||
|
||||
placement_global[l_idx, g_idx, gid_idx] = slot_idx
|
||||
|
||||
return placement_global
|
||||
|
||||
def pack_update_info(self, update_info_generator):
|
||||
"""
|
||||
Pack a list of update info tuples for efficient IPC.
|
||||
"""
|
||||
send_all = []
|
||||
recv_all = []
|
||||
maps = []
|
||||
log2phy_all = []
|
||||
layer_ids = []
|
||||
|
||||
for send_info, recv_info, new_expert_map, layer_id in update_info_generator:
|
||||
|
||||
send_info_this_rank = send_info[
|
||||
self.rank_id] if self.rank_id in send_info else []
|
||||
recv_info_this_rank = recv_info[
|
||||
self.rank_id] if self.rank_id in recv_info else []
|
||||
send_all.append(send_info_this_rank)
|
||||
recv_all.append(recv_info_this_rank)
|
||||
|
||||
maps.append(new_expert_map[self.rank_id].numpy().tolist())
|
||||
|
||||
log2phy_map = generate_log2phy_map(new_expert_map)
|
||||
log2phy_all.append(log2phy_map[self.rank_id].numpy().tolist())
|
||||
|
||||
layer_ids.append(layer_id)
|
||||
|
||||
return list(zip(send_all, recv_all, maps, log2phy_all, layer_ids))
|
||||
|
||||
|
||||
class EplbProcess:
|
||||
|
||||
def __init__(self,
|
||||
shared_dict,
|
||||
policy_type: int = 0,
|
||||
enable_d2d: bool = True):
|
||||
"""
|
||||
Args:
|
||||
shared_dict: Cross-process shared dict returned by Manager().dict()
|
||||
policy_type: Integer passed to PolicyFactory.generate_policy
|
||||
enable_d2d: Whether to enable D2D loading
|
||||
"""
|
||||
self.shared_dict = shared_dict
|
||||
self.policy_type = policy_type
|
||||
self.enable_d2d = enable_d2d
|
||||
self.planner_q: Queue[Any] = Queue()
|
||||
self.block_update_q: Queue[Any] = Queue(maxsize=1)
|
||||
|
||||
# Create EplbWorker instance
|
||||
self.worker = EplbWorker(self.shared_dict, self.policy_type,
|
||||
self.enable_d2d)
|
||||
|
||||
def worker_process(self, planner_q, block_update_q):
|
||||
"""
|
||||
Subprocess entry: bind to specified NPU, loop waiting for planner_q to wake up, call do_update, then notify main process update is complete.
|
||||
"""
|
||||
while True:
|
||||
try:
|
||||
planner_q.get()
|
||||
|
||||
packed_update_info = self.worker.do_update()
|
||||
|
||||
while True:
|
||||
if not block_update_q.empty():
|
||||
continue
|
||||
block_update_q.put(packed_update_info)
|
||||
break
|
||||
|
||||
except Exception as e:
|
||||
logger.warning(f"[EPLB subprocess Exiting due to error: {e}",
|
||||
exc_info=True)
|
||||
break
|
||||
|
||||
def _launch_process(self):
|
||||
"""
|
||||
Use spawn method to launch subprocess and return (planner_q, block_update_q, proc).
|
||||
"""
|
||||
proc = Process(target=self.worker_process,
|
||||
args=(self.planner_q, self.block_update_q),
|
||||
daemon=True)
|
||||
|
||||
proc.start()
|
||||
return proc
|
||||
0
vllm_npu/eplb/core/policy/__init__.py
Normal file
0
vllm_npu/eplb/core/policy/__init__.py
Normal file
42
vllm_npu/eplb/core/policy/policy_abstract.py
Normal file
42
vllm_npu/eplb/core/policy/policy_abstract.py
Normal file
@@ -0,0 +1,42 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from abc import abstractmethod
|
||||
|
||||
|
||||
class DynamicConfig:
|
||||
placement_policy = None
|
||||
|
||||
max_transferred_expert_per_layer = 100 # Maximum number of experts that can be migrated per layer on a single host
|
||||
ep_worldsize = 64 # Total number of dies across the entire cluster where experts are distributed
|
||||
num_die_per_host = 8 # Number of dies on each host machine
|
||||
|
||||
|
||||
class EplbPolicy:
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
"""
|
||||
Pass in the weights and return expert replication and placement under relevant constraints.
|
||||
INPUT:
|
||||
current_expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_workload = expert_table[layer0][rankId][expert_num_i]
|
||||
|
||||
RETURNED: (res, expert_table)
|
||||
res:
|
||||
1 -- table_changed
|
||||
0 -- not_changed
|
||||
|
||||
expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_num_i --- [0, MaxExpertPerRank]
|
||||
expertID = expert_table[layer0][rankId][expert_num_i]
|
||||
array_values:
|
||||
[0, 1, 2, 3, 248]
|
||||
[4, 5, 6, 7, 254]
|
||||
[8, 9, 10, 11, 71]
|
||||
...
|
||||
[252, 253, 254, 255, 0]
|
||||
"""
|
||||
pass
|
||||
389
vllm_npu/eplb/core/policy/policy_dynamic_ep.py
Normal file
389
vllm_npu/eplb/core/policy/policy_dynamic_ep.py
Normal file
@@ -0,0 +1,389 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from collections import defaultdict
|
||||
from typing import cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
|
||||
class DynamicTable:
|
||||
# workload_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: workload (heat) at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the workload (heat) of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
workload_table = None
|
||||
|
||||
# placement_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: physical expert ID at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the physical expert ID of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
placement_table = None
|
||||
|
||||
|
||||
class DynamicEplb(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
@staticmethod
|
||||
def add_redundant(current_expert_table, expert_workload,
|
||||
num_original_expert):
|
||||
layer_num, npu_num, experts_per_npu = expert_workload.shape
|
||||
workload_new = np.zeros((layer_num, num_original_expert))
|
||||
for layer_idx in range(layer_num):
|
||||
workload_dict: dict[int, int] = defaultdict(int)
|
||||
placement_layer = current_expert_table[layer_idx].copy()
|
||||
workload_layer = expert_workload[layer_idx].copy()
|
||||
for npu_idx in range(npu_num):
|
||||
for expert_idx in range(experts_per_npu):
|
||||
workload_dict[placement_layer[npu_idx][
|
||||
expert_idx]] += workload_layer[npu_idx][expert_idx]
|
||||
for expert_idx in range(num_original_expert):
|
||||
workload_new[layer_idx][expert_idx] = workload_dict[expert_idx]
|
||||
return workload_new
|
||||
|
||||
@staticmethod
|
||||
# Split hot (high-load) experts into redundant experts
|
||||
def original_compute_balanced_pack_redundancy(origin_weights, card_num,
|
||||
num_redundancy_expert):
|
||||
# Step 1: Sort the items by weight in descending order (we are sorting by weight now)
|
||||
# Sort based on the second element (the second value of each tuple)
|
||||
route_expert_num = len(origin_weights)
|
||||
route_expert_redundancy: list[list[int]] = [
|
||||
[] for _ in range(route_expert_num)
|
||||
]
|
||||
for i in range(num_redundancy_expert):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
tmp_raw_weight = weights[0][1] * (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
route_expert_redundancy[weights[0][0]].append(route_expert_num + i)
|
||||
avg_weight = tmp_raw_weight / (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
weights[0] = (weights[0][0], avg_weight)
|
||||
origin_weights = weights
|
||||
|
||||
# Step 2: Calculate the number of items per box
|
||||
expert_num = route_expert_num + num_redundancy_expert
|
||||
items_per_box = expert_num // card_num # Number of items per box
|
||||
remaining_items = expert_num % card_num # Number of items per box
|
||||
|
||||
# Step 3: Initialize card_num boxes with empty lists to store item IDs
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num # To store the total weight of each box
|
||||
box_counts = [0] * card_num # To store the number of items in each box
|
||||
index = 0
|
||||
for i in range(route_expert_num):
|
||||
redundancy_num = len(route_expert_redundancy[i])
|
||||
for _ in range(redundancy_num):
|
||||
cur_weight = 0
|
||||
for item, weight in origin_weights:
|
||||
if item == i:
|
||||
cur_weight = weight
|
||||
|
||||
boxes[index].append(i)
|
||||
boxes_weights[index].append(cur_weight)
|
||||
box_weights[index] += cur_weight
|
||||
box_counts[index] += 1
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
origin_weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
# Step 4: Distribute items into boxes based on weight
|
||||
for item_id, weight in origin_weights:
|
||||
# Find the box with the least items but not full
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if item_id in boxes[i]:
|
||||
continue
|
||||
# Only choose boxes that still have space (box_counts[i] < items_per_box)
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
min_box_index = i
|
||||
|
||||
# Place the item (id) into the selected box
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
# If there's an imbalance in the remaining items, reduce the "remaining_items" counter
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
# Step 5: Output each box's contents and total weight
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i], # List of item IDs in the box
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i], # Total weight in this box
|
||||
"item_count": box_counts[i] # Number of items in the box
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
# Split hot (high-load) experts into redundant experts
|
||||
@staticmethod
|
||||
def compute_balanced_pack_redundancy(origin_weights, card_num,
|
||||
num_redundancy_expert):
|
||||
route_expert_num = len(origin_weights)
|
||||
route_expert_redundancy: list[list[int]] = [
|
||||
[] for _ in range(route_expert_num)
|
||||
]
|
||||
for i in range(num_redundancy_expert):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights],
|
||||
kind='stable')[::-1]
|
||||
weights = [origin_weights[idx] for idx in sorted_indices]
|
||||
tmp_raw_weight = weights[0][1] * (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
route_expert_redundancy[weights[0][0]].append(route_expert_num + i)
|
||||
avg_weight = tmp_raw_weight / (
|
||||
len(route_expert_redundancy[weights[0][0]]) + 1)
|
||||
weights[0] = (weights[0][0], avg_weight)
|
||||
origin_weights = weights
|
||||
|
||||
expert_num = route_expert_num + num_redundancy_expert
|
||||
if card_num == 0:
|
||||
raise RuntimeError("card_num can not be 0.")
|
||||
items_per_box = expert_num // card_num
|
||||
remaining_items = expert_num % card_num
|
||||
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num
|
||||
box_counts = [0] * card_num
|
||||
|
||||
all_weights = np.zeros((expert_num, ), dtype='object')
|
||||
all_weights[:route_expert_num] = origin_weights
|
||||
|
||||
index = route_expert_num
|
||||
for i in range(route_expert_num):
|
||||
redundancy_num = len(route_expert_redundancy[i])
|
||||
for _ in range(redundancy_num):
|
||||
for item, weight in origin_weights:
|
||||
if item == i:
|
||||
all_weights[index] = (item, weight)
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([t[1] for t in all_weights],
|
||||
kind='stable')[::-1]
|
||||
all_weights = [all_weights[idx] for idx in sorted_indices]
|
||||
for item_id, weight in all_weights:
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
if item_id not in boxes[i]:
|
||||
min_box_index = i
|
||||
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i],
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i],
|
||||
"item_count": box_counts[i]
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
# Scheme without redundant experts
|
||||
@staticmethod
|
||||
def compute_balanced_pack(origin_weights, card_num):
|
||||
sorted_indices = np.argsort([t[1] for t in origin_weights])[::-1]
|
||||
weights = origin_weights[sorted_indices]
|
||||
expert_num = len(weights)
|
||||
if card_num == 0:
|
||||
raise RuntimeError("card_num can not be 0.")
|
||||
items_per_box = expert_num // card_num
|
||||
remaining_items = expert_num % card_num
|
||||
|
||||
boxes: list[list[int]] = [[] for _ in range(card_num)]
|
||||
boxes_weights: list[list[float]] = [[] for _ in range(card_num)]
|
||||
box_weights = [0] * card_num
|
||||
box_counts = [0] * card_num
|
||||
|
||||
for item_id, weight in weights:
|
||||
min_box_index = -1
|
||||
for i in range(card_num):
|
||||
if box_counts[i] < items_per_box or (box_counts[i]
|
||||
== items_per_box
|
||||
and remaining_items > 0):
|
||||
if min_box_index == -1 or box_weights[i] < box_weights[
|
||||
min_box_index]:
|
||||
min_box_index = i
|
||||
|
||||
boxes[min_box_index].append(item_id)
|
||||
boxes_weights[min_box_index].append(weight)
|
||||
box_weights[min_box_index] += weight
|
||||
box_counts[min_box_index] += 1
|
||||
|
||||
if box_counts[min_box_index] == (items_per_box +
|
||||
1) and remaining_items > 0:
|
||||
remaining_items -= 1
|
||||
|
||||
result = []
|
||||
for i in range(card_num):
|
||||
result.append({
|
||||
"box_index": i + 1,
|
||||
"items": boxes[i],
|
||||
"weight": boxes_weights[i],
|
||||
"total_weight": box_weights[i],
|
||||
"item_count": box_counts[i]
|
||||
})
|
||||
|
||||
return result, boxes
|
||||
|
||||
@staticmethod
|
||||
def get_redundant_num(npu_num, counts):
|
||||
redundant_num_each_npu: int = np.sum(counts - 1)
|
||||
return redundant_num_each_npu
|
||||
|
||||
@staticmethod
|
||||
def calculate_max_heat_per_layer(workload_table, layer_num):
|
||||
max_heat_per_layer: list[float] = []
|
||||
for layer_idx in range(layer_num):
|
||||
npu_heats_now = np.sum(workload_table[layer_idx], axis=1)
|
||||
max_heat_per_layer.append(np.max(npu_heats_now))
|
||||
return max_heat_per_layer
|
||||
|
||||
@staticmethod
|
||||
def constraint_expert_local_exchange(current_expert_table,
|
||||
global_deployment):
|
||||
for layer_id in range(len(global_deployment)):
|
||||
for card_id in range(len(global_deployment[layer_id])):
|
||||
current_list = [
|
||||
int(x) for x in current_expert_table[layer_id][card_id]
|
||||
]
|
||||
new_list = [
|
||||
int(x) for x in global_deployment[layer_id][card_id]
|
||||
]
|
||||
num = len(new_list)
|
||||
|
||||
new_index = [-1] * num
|
||||
new_result = [-1] * num
|
||||
remaining_elements = []
|
||||
|
||||
for i in range(num):
|
||||
flag = True
|
||||
for j in range(num):
|
||||
if new_list[i] == current_list[j] and new_index[
|
||||
j] == -1:
|
||||
new_index[j] = 0
|
||||
new_result[j] = current_list[j]
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
remaining_elements.append(new_list[i])
|
||||
|
||||
index = 0
|
||||
for k in range(num):
|
||||
if new_result[k] == -1:
|
||||
new_result[k] = remaining_elements[index]
|
||||
index += 1
|
||||
|
||||
global_deployment[layer_id][card_id] = new_result
|
||||
|
||||
return global_deployment
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
|
||||
info = DynamicTable()
|
||||
info.workload_table = np.array(expert_workload)
|
||||
info.placement_table = np.array(current_expert_table)
|
||||
assert info.workload_table is not None
|
||||
layer_num, num_npus, experts_per_npu = info.workload_table.shape
|
||||
assert info.placement_table is not None
|
||||
row = cast(np.ndarray, info.placement_table[0])
|
||||
expert_ids, counts = np.unique(row, return_counts=True)
|
||||
num_redundancy_expert = self.get_redundant_num(num_npus, counts)
|
||||
num_original_expert = len(expert_ids)
|
||||
layer_workloads = self.add_redundant(info.placement_table,
|
||||
info.workload_table,
|
||||
num_original_expert)
|
||||
max_heat_per_layer_before = self.calculate_max_heat_per_layer(
|
||||
info.workload_table, layer_num)
|
||||
npu_heat_all_origin = sum(max_heat_per_layer_before)
|
||||
|
||||
# Perform load balancing and deploy redundant experts
|
||||
layer_num = layer_workloads.shape[0]
|
||||
expert_num = layer_workloads.shape[1]
|
||||
# Validate that the number of experts, number of cards, and number of redundant experts do not exceed the number of cards
|
||||
if num_original_expert != expert_num:
|
||||
raise ValueError(
|
||||
f"the number of original experts {num_original_expert} must be equal to expert_num {expert_num}"
|
||||
)
|
||||
|
||||
if num_npus <= 0:
|
||||
raise ValueError("the number of NPUs must be greater than 0")
|
||||
|
||||
if num_npus < num_redundancy_expert:
|
||||
raise ValueError(
|
||||
f"the number of NPUs {num_npus} must be greater than or equal to the number of redundant experts {num_redundancy_expert}"
|
||||
)
|
||||
|
||||
# Number of experts deployed on each card includes one redundant expert
|
||||
global_deployment: list[list[list[int]]] = [[[]
|
||||
for _ in range(num_npus)]
|
||||
for _ in range(layer_num)]
|
||||
# Iterate to obtain the placement strategy for each layer, taking computational balance into account
|
||||
max_heat_per_layer_after = np.zeros([layer_num])
|
||||
for layer in range(layer_num):
|
||||
# Get the expert IDs and their corresponding workloads for the current layer;
|
||||
# workloads need to be normalized, and one redundant expert is added per card
|
||||
weights = np.zeros((expert_num, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(
|
||||
layer_workloads[layer]):
|
||||
weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
# Obtain the globally balanced placement strategy for each layer
|
||||
result, layer_deployment = self.original_compute_balanced_pack_redundancy(
|
||||
weights, num_npus, num_redundancy_expert)
|
||||
|
||||
global_deployment[layer] = layer_deployment
|
||||
max_heat_per_layer_after[layer] = max(
|
||||
result, key=lambda x: x['total_weight'])['total_weight']
|
||||
|
||||
new_global_deployment = self.constraint_expert_local_exchange(
|
||||
current_expert_table, global_deployment)
|
||||
# Obtain the priority of each layer
|
||||
layer_changed_ratio = []
|
||||
for layer_idx in range(layer_num):
|
||||
layer_changed_ratio.append(max_heat_per_layer_after[layer_idx] /
|
||||
max_heat_per_layer_before[layer_idx])
|
||||
|
||||
per_layer_priority = np.argsort(layer_changed_ratio)
|
||||
npu_heat_all_after = sum(max_heat_per_layer_after)
|
||||
|
||||
change = 0
|
||||
if npu_heat_all_after < 0.95 * npu_heat_all_origin:
|
||||
change = 1
|
||||
|
||||
return change, per_layer_priority, np.array(
|
||||
new_global_deployment).tolist()
|
||||
771
vllm_npu/eplb/core/policy/policy_dynamic_ep_v2.py
Normal file
771
vllm_npu/eplb/core/policy/policy_dynamic_ep_v2.py
Normal file
@@ -0,0 +1,771 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
from abc import abstractmethod
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class DynamicConfig:
|
||||
placement_policy = None
|
||||
|
||||
max_transferred_expert_per_layer = 100 # Maximum number of experts that can be migrated per layer on a single host
|
||||
ep_worldsize = 64 # Total number of dies across the entire cluster where experts are distributed
|
||||
num_die_per_host = 8 # Number of dies on each host machine
|
||||
|
||||
|
||||
class EplbPolicy:
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
self.config = config
|
||||
|
||||
@abstractmethod
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
"""
|
||||
Pass in the weights and return expert replication and placement under relevant constraints.
|
||||
INPUT:
|
||||
current_expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_workload = expert_table[layer0][rankId][expert_num_i]
|
||||
|
||||
RETURNED: (res, expert_table)
|
||||
res:
|
||||
1 -- table_changed
|
||||
0 -- not_changed
|
||||
|
||||
expert_table: [layerId, rankId, expert_num_i]
|
||||
expert_num_i --- [0, MaxExpertPerRank]
|
||||
expertID = expert_table[layer0][rankId][expert_num_i]
|
||||
array_values:
|
||||
[0, 1, 2, 3, 248]
|
||||
[4, 5, 6, 7, 254]
|
||||
[8, 9, 10, 11, 71]
|
||||
...
|
||||
[252, 253, 254, 255, 0]
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DynamicTable:
|
||||
# workload_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: workload (heat) at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the workload (heat) of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
workload_table = None
|
||||
|
||||
# placement_table:
|
||||
# 3D matrix: [layer, gpus, experts_per_gpu_per_layer] -> value: physical expert ID at the corresponding position
|
||||
# Size: number of layers * number of GPUs * number of experts per GPU per layer
|
||||
# The element at (i, j, k) represents the physical expert ID of the k-th expert on the j-th GPU in the i-th layer
|
||||
# For experts that are not available or collected, the value is set to -1
|
||||
placement_table = None
|
||||
|
||||
|
||||
class DynamicEplbV2(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
@staticmethod
|
||||
def safe_divide(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a / b
|
||||
|
||||
@staticmethod
|
||||
def safe_exact_divide(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a // b
|
||||
|
||||
@staticmethod
|
||||
def safe_mod(a, b):
|
||||
if b == 0:
|
||||
print("Division by zero is not allowed")
|
||||
return 0
|
||||
return a % b
|
||||
|
||||
@staticmethod
|
||||
def add_redundant(current_expert_table, expert_workload,
|
||||
num_original_expert):
|
||||
layer_num, npu_num, experts_per_npu = expert_workload.shape
|
||||
workload_new = np.zeros((layer_num, num_original_expert))
|
||||
for layer_idx in range(layer_num):
|
||||
workload_dict: dict[int, int] = defaultdict(int)
|
||||
placement_layer = current_expert_table[layer_idx].copy()
|
||||
workload_layer = expert_workload[layer_idx].copy()
|
||||
for npu_idx in range(npu_num):
|
||||
for expert_idx in range(experts_per_npu):
|
||||
workload_dict[placement_layer[npu_idx][
|
||||
expert_idx]] += workload_layer[npu_idx][expert_idx]
|
||||
for expert_idx in range(num_original_expert):
|
||||
workload_new[layer_idx][expert_idx] = workload_dict[expert_idx]
|
||||
return workload_new
|
||||
|
||||
@staticmethod
|
||||
def get_redundant_num(npu_num, counts):
|
||||
redundant_num_each_npu: int = int(np.sum(counts - 1))
|
||||
return redundant_num_each_npu
|
||||
|
||||
@staticmethod
|
||||
def calculate_max_heat_per_layer(workload_table, layer_num):
|
||||
max_heat_per_layer: list[float] = []
|
||||
for layer_idx in range(layer_num):
|
||||
npu_heats_now = np.sum(workload_table[layer_idx], axis=1)
|
||||
max_heat_per_layer.append(np.max(npu_heats_now))
|
||||
return max_heat_per_layer
|
||||
|
||||
def calculate_initial_imbalance(self, global_deployment,
|
||||
new_layer_workloads):
|
||||
|
||||
device_num = global_deployment.shape[1]
|
||||
layer_imbalance = []
|
||||
expert_num = np.zeros_like(new_layer_workloads)
|
||||
for layer_id, layer in enumerate(global_deployment):
|
||||
for device in layer:
|
||||
for expert_id in device:
|
||||
expert_num[layer_id][expert_id] += 1
|
||||
|
||||
for layer_id, layer in enumerate(global_deployment):
|
||||
cur_layer_max_workload = 0
|
||||
total_workload = 0
|
||||
for box in layer:
|
||||
box_workload = 0
|
||||
for expert_id in box:
|
||||
update_workload = self.safe_divide(
|
||||
new_layer_workloads[layer_id][expert_id],
|
||||
expert_num[layer_id][expert_id])
|
||||
box_workload += update_workload
|
||||
total_workload += update_workload
|
||||
if cur_layer_max_workload < box_workload:
|
||||
cur_layer_max_workload = box_workload
|
||||
|
||||
cur_layer_imbalance = self.safe_divide(
|
||||
cur_layer_max_workload,
|
||||
(self.safe_divide(total_workload, device_num)))
|
||||
layer_imbalance.append(cur_layer_imbalance)
|
||||
|
||||
return layer_imbalance
|
||||
|
||||
def compute_redundant_assignments(self, base_experts,
|
||||
num_redundant_experts, num_experts):
|
||||
|
||||
redundant_assignments: list[list[int]] = [[]
|
||||
for _ in range(num_experts)]
|
||||
current_weights = base_experts.copy()
|
||||
|
||||
for i in range(num_redundant_experts):
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
target_expert = sorted_weights[0]
|
||||
expert_id, original_weight = target_expert
|
||||
|
||||
current_redundancy = len(redundant_assignments[expert_id])
|
||||
new_avg_weight = self.safe_divide(
|
||||
original_weight * (current_redundancy + 1),
|
||||
(current_redundancy + 2))
|
||||
|
||||
redundant_assignments[expert_id].append(num_experts + i)
|
||||
current_weights[sorted_indices[0]] = (expert_id, new_avg_weight)
|
||||
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
return redundant_assignments, sorted_weights
|
||||
|
||||
def repeat_compute_redundant_assignments(self, layer_workloads, rendun_pos,
|
||||
num_experts, num_exist_expert,
|
||||
device_assignments, device_counts,
|
||||
expert_from_device,
|
||||
com_between_devices):
|
||||
|
||||
current_weights = np.zeros((num_experts, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(layer_workloads):
|
||||
current_weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
devices_with_slots = []
|
||||
for device_id, device_rendun_pos in enumerate(rendun_pos):
|
||||
if len(device_rendun_pos) != 0:
|
||||
devices_with_slots.append(device_id)
|
||||
|
||||
while devices_with_slots:
|
||||
sorted_indices = np.argsort([w for _, w in current_weights],
|
||||
kind='stable')[::-1]
|
||||
sorted_weights = [current_weights[i] for i in sorted_indices]
|
||||
|
||||
for index, target_weight in enumerate(sorted_weights):
|
||||
expert_id, original_weight = target_weight
|
||||
if original_weight == -1:
|
||||
print("Error:Redundant expert failure re-occurred")
|
||||
redundancy_successful = True
|
||||
break
|
||||
redundancy_successful = False
|
||||
for cur_device_id in devices_with_slots:
|
||||
if expert_id not in device_assignments[cur_device_id]:
|
||||
pos = rendun_pos[cur_device_id].pop()
|
||||
if len(rendun_pos[cur_device_id]) == 0:
|
||||
devices_with_slots = [
|
||||
device_id for device_id in devices_with_slots
|
||||
if device_id != cur_device_id
|
||||
]
|
||||
device_assignments[cur_device_id][pos] = expert_id
|
||||
device_counts[cur_device_id] += 1
|
||||
communication_box_index = expert_from_device[expert_id]
|
||||
com_between_devices[cur_device_id][
|
||||
communication_box_index] = expert_id
|
||||
new_weight = self.safe_divide(
|
||||
(original_weight * num_exist_expert[expert_id]),
|
||||
(num_exist_expert[expert_id] + 1))
|
||||
sorted_weights[index] = (expert_id, new_weight)
|
||||
num_exist_expert[expert_id] += 1
|
||||
redundancy_successful = True
|
||||
break
|
||||
if redundancy_successful:
|
||||
break
|
||||
|
||||
sorted_indices = np.argsort([id for id, _ in sorted_weights],
|
||||
kind='stable')
|
||||
sorted_weights = [sorted_weights[i][1] for i in sorted_indices]
|
||||
|
||||
return sorted_weights, device_assignments, device_counts, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def prepare_expert_list(base_experts, redundant_assignments,
|
||||
num_redundant_experts):
|
||||
redundant_expert_list = np.empty(num_redundant_experts, dtype=object)
|
||||
|
||||
index = 0
|
||||
num_experts = len(redundant_assignments)
|
||||
for expert_id in range(num_experts):
|
||||
for _ in redundant_assignments[expert_id]:
|
||||
redundant_expert_list[index] = (expert_id,
|
||||
next(w
|
||||
for eid, w in base_experts
|
||||
if eid == expert_id))
|
||||
index += 1
|
||||
|
||||
sorted_indices = np.argsort([w for _, w in redundant_expert_list],
|
||||
kind='stable')[::-1]
|
||||
return [redundant_expert_list[i] for i in sorted_indices]
|
||||
|
||||
@staticmethod
|
||||
def non_redundant_expert_information(origin_deployment, updated_weights,
|
||||
rendun_pos):
|
||||
|
||||
device_num = len(origin_deployment)
|
||||
num_experts_per_device = origin_deployment.shape[1]
|
||||
device_assignments = [[-1 for _ in range(num_experts_per_device)]
|
||||
for _ in range(device_num)]
|
||||
device_weights = [[0 for _ in range(num_experts_per_device)]
|
||||
for _ in range(device_num)]
|
||||
device_loads = [0] * device_num
|
||||
device_counts = [0] * device_num
|
||||
|
||||
for device_id, device in enumerate(origin_deployment):
|
||||
for index, expert_id in enumerate(device):
|
||||
if index in rendun_pos[device_id]:
|
||||
continue
|
||||
device_assignments[device_id][index] = expert_id
|
||||
cur_weight = next(
|
||||
weight for expert_id_of_weight, weight in updated_weights
|
||||
if expert_id_of_weight == expert_id)
|
||||
device_weights[device_id][index] = cur_weight
|
||||
device_loads[device_id] += cur_weight
|
||||
device_counts[device_id] += 1
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts
|
||||
|
||||
def recomputing_initial_weight(self, layer_workloads, device_assignments):
|
||||
num_all_experts = [0] * len(layer_workloads)
|
||||
for device in device_assignments:
|
||||
for expert_id in device:
|
||||
if expert_id != -1:
|
||||
num_all_experts[expert_id] += 1
|
||||
|
||||
cur_layer_workload = []
|
||||
for expert_id, weight in enumerate(layer_workloads):
|
||||
if num_all_experts[expert_id] == 0:
|
||||
cur_layer_workload.append(-1)
|
||||
else:
|
||||
cur_layer_workload.append(
|
||||
self.safe_divide(weight, num_all_experts[expert_id]))
|
||||
|
||||
return cur_layer_workload, num_all_experts
|
||||
|
||||
def distribute_redun_experts(self, layer_workloads, device_assignments,
|
||||
device_weights, device_loads, device_counts,
|
||||
redundant_expert_list, expert_from_device,
|
||||
num_experts, rendun_pos):
|
||||
|
||||
num_devices = len(device_assignments)
|
||||
com_between_devices: list[dict[int,
|
||||
int]] = [{} for _ in range(num_devices)]
|
||||
|
||||
for expert_id, weight in redundant_expert_list:
|
||||
candidate = -1
|
||||
for dev_id in range(num_devices):
|
||||
if len(rendun_pos[dev_id]) == 0:
|
||||
continue
|
||||
if expert_id in device_assignments[dev_id]:
|
||||
continue
|
||||
if candidate == -1 or device_loads[dev_id] < device_loads[
|
||||
candidate]:
|
||||
candidate = dev_id
|
||||
if candidate != -1:
|
||||
pos = rendun_pos[candidate].pop()
|
||||
device_assignments[candidate][pos] = expert_id
|
||||
device_weights[candidate][pos] = weight
|
||||
device_loads[candidate] += weight
|
||||
device_counts[candidate] += 1
|
||||
|
||||
communication_box_index = expert_from_device[expert_id]
|
||||
com_between_devices[candidate][
|
||||
communication_box_index] = expert_id
|
||||
|
||||
if any(sublist for sublist in rendun_pos):
|
||||
cur_layer_workload, num_exist_expert = self.recomputing_initial_weight(
|
||||
layer_workloads, device_assignments)
|
||||
|
||||
update_workload, device_assignments, device_counts, com_between_devices = self.repeat_compute_redundant_assignments(
|
||||
cur_layer_workload, rendun_pos, num_experts, num_exist_expert,
|
||||
device_assignments, device_loads, expert_from_device,
|
||||
com_between_devices)
|
||||
|
||||
device_loads = [0] * len(device_counts)
|
||||
for device_id, device in enumerate(device_assignments):
|
||||
for index, expert_id in enumerate(device):
|
||||
device_weights[device_id][index] = update_workload[
|
||||
expert_id]
|
||||
device_loads[device_id] += update_workload[expert_id]
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts, com_between_devices
|
||||
|
||||
def redundancy_again(self, layer_workloads, origin_weights,
|
||||
origin_deployment, expert_from_device, num_node,
|
||||
is_node_redundant, rendun_pos):
|
||||
|
||||
num_experts = len(origin_weights)
|
||||
if is_node_redundant:
|
||||
num_experts = num_experts * num_node
|
||||
|
||||
num_redundant_experts = 0
|
||||
for rank_empty_pos in rendun_pos:
|
||||
num_redundant_experts += len(rank_empty_pos)
|
||||
|
||||
redundant_assignments, updated_weights = self.compute_redundant_assignments(
|
||||
origin_weights, num_redundant_experts, num_experts)
|
||||
|
||||
redundant_expert_list = self.prepare_expert_list(
|
||||
updated_weights, redundant_assignments, num_redundant_experts)
|
||||
|
||||
device_assignments, device_weights, device_loads, device_counts = self.non_redundant_expert_information(
|
||||
origin_deployment, updated_weights, rendun_pos)
|
||||
|
||||
device_assignments, device_weights, device_loads, device_counts, com_between_devices = self.distribute_redun_experts(
|
||||
layer_workloads, device_assignments, device_weights, device_loads,
|
||||
device_counts, redundant_expert_list, expert_from_device,
|
||||
num_experts, rendun_pos)
|
||||
|
||||
return device_assignments, device_weights, device_loads, device_counts, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def generate_allocation_report(device_assignments, device_weights,
|
||||
device_loads, device_counts):
|
||||
|
||||
report = []
|
||||
max_load = 0.0
|
||||
|
||||
for dev_id in range(len(device_assignments)):
|
||||
current_load = device_loads[dev_id]
|
||||
max_load = max(max_load, current_load)
|
||||
|
||||
report.append({
|
||||
"device_id": dev_id + 1,
|
||||
"assigned_experts": device_assignments[dev_id],
|
||||
"expert_weights": device_weights[dev_id],
|
||||
"total_load": current_load,
|
||||
"expert_count": device_counts[dev_id]
|
||||
})
|
||||
|
||||
return report, max_load
|
||||
|
||||
@staticmethod
|
||||
def exchange_expert(cur_exchange_index, next_exchange_index, cur_device_id,
|
||||
next_device_id, cur_layer_result, com_between_devices):
|
||||
|
||||
cur_device_deployment = cur_layer_result[cur_device_id][
|
||||
'assigned_experts']
|
||||
next_device_deployment = cur_layer_result[next_device_id][
|
||||
'assigned_experts']
|
||||
|
||||
cur_device_weight = cur_layer_result[cur_device_id]['expert_weights']
|
||||
next_device_weight = cur_layer_result[next_device_id]['expert_weights']
|
||||
|
||||
cur_expert_id = cur_device_deployment[cur_exchange_index]
|
||||
next_expert_id = next_device_deployment[next_exchange_index]
|
||||
cur_device_deployment[cur_exchange_index] = next_expert_id
|
||||
next_device_deployment[next_exchange_index] = cur_expert_id
|
||||
|
||||
cur_expert_weight = cur_device_weight[cur_exchange_index]
|
||||
next_expert_weight = next_device_weight[next_exchange_index]
|
||||
cur_device_weight[cur_exchange_index] = next_expert_weight
|
||||
next_device_weight[next_exchange_index] = cur_expert_weight
|
||||
|
||||
cur_layer_result[cur_device_id][
|
||||
'total_load'] += next_expert_weight - cur_expert_weight
|
||||
cur_layer_result[next_device_id][
|
||||
'total_load'] += cur_expert_weight - next_expert_weight
|
||||
|
||||
com_between_devices[cur_device_id][next_device_id] = next_expert_id
|
||||
com_between_devices[next_device_id][cur_device_id] = cur_expert_id
|
||||
|
||||
def redundant_expert_deployment(self, layer_workloads, original_deployment,
|
||||
expert_from_device, node_num,
|
||||
is_node_redundant, rendun_pos):
|
||||
device_num, per_device_expert_num = original_deployment.shape
|
||||
route_expert_num = layer_workloads.shape[0]
|
||||
per_node_device_num = self.safe_exact_divide(device_num, node_num)
|
||||
per_node_route_expert_num = per_node_device_num * (
|
||||
per_device_expert_num - 1)
|
||||
|
||||
weights = np.zeros((route_expert_num, ), dtype='object')
|
||||
for expert_id, workload_weight in enumerate(layer_workloads):
|
||||
weights[expert_id] = (expert_id, workload_weight)
|
||||
|
||||
if is_node_redundant:
|
||||
|
||||
device_assignments = []
|
||||
device_weights = []
|
||||
device_loads = []
|
||||
device_counts = []
|
||||
com_between_devices = []
|
||||
|
||||
for node_id in range(node_num):
|
||||
cur_node_weights = weights[node_id *
|
||||
per_node_route_expert_num:(node_id +
|
||||
1) *
|
||||
per_node_route_expert_num]
|
||||
cur_original_deployment = original_deployment[
|
||||
node_id * per_node_device_num:(node_id + 1) *
|
||||
per_node_device_num]
|
||||
|
||||
cur_node_rendun_pos = rendun_pos[node_id *
|
||||
per_node_device_num:(node_id +
|
||||
1) *
|
||||
per_node_device_num]
|
||||
|
||||
cur_device_assignments, cur_device_weights, cur_device_loads, cur_device_counts, cur_com_between_devices = self.redundancy_again(
|
||||
layer_workloads, cur_node_weights, cur_original_deployment,
|
||||
expert_from_device, node_num, is_node_redundant,
|
||||
cur_node_rendun_pos)
|
||||
device_assignments += cur_device_assignments
|
||||
device_weights += cur_device_weights
|
||||
device_loads += cur_device_loads
|
||||
device_counts += cur_device_counts
|
||||
com_between_devices += cur_com_between_devices
|
||||
|
||||
else:
|
||||
device_assignments, device_weights, device_loads, device_counts, com_between_devices = self.redundancy_again(
|
||||
layer_workloads, weights, original_deployment,
|
||||
expert_from_device, node_num, is_node_redundant, rendun_pos)
|
||||
report, max_load = self.generate_allocation_report(
|
||||
device_assignments, device_weights, device_loads, device_counts)
|
||||
|
||||
return report, max_load, com_between_devices
|
||||
|
||||
@staticmethod
|
||||
def two_device_exchange_experts(cur_device_result, exchange_device_result,
|
||||
cur_exchanged_expert_id,
|
||||
next_exchanged_expert_id, ave_workload,
|
||||
increment, num_redundancy_expert):
|
||||
|
||||
cur_device_weight = cur_device_result['expert_weights']
|
||||
next_device_weight = exchange_device_result['expert_weights']
|
||||
|
||||
cur_device_expert_id = cur_device_result['assigned_experts']
|
||||
next_device_expert_id = exchange_device_result['assigned_experts']
|
||||
|
||||
cur_device_total_weight = cur_device_result['total_load']
|
||||
next_device_total_weight = exchange_device_result['total_load']
|
||||
max_weight = max(cur_device_total_weight, next_device_total_weight)
|
||||
|
||||
cur_exchange_index = -1
|
||||
next_exchange_index = -1
|
||||
|
||||
for index, weight in enumerate(cur_device_weight):
|
||||
for next_index, next_weight in enumerate(next_device_weight):
|
||||
change_flag = True
|
||||
if (cur_device_expert_id[index] in next_device_expert_id
|
||||
or next_device_expert_id[next_index]
|
||||
in cur_device_expert_id):
|
||||
change_flag = False
|
||||
if (cur_device_expert_id[index] not in cur_exchanged_expert_id
|
||||
) and (next_device_expert_id[next_index]
|
||||
not in next_exchanged_expert_id) and change_flag:
|
||||
|
||||
cur_total_weight_after_exchange = cur_device_total_weight - weight + next_weight
|
||||
next_total_weight_after_exchange = next_device_total_weight - next_weight + weight
|
||||
exchange_max_weight = max(
|
||||
cur_total_weight_after_exchange,
|
||||
next_total_weight_after_exchange)
|
||||
if exchange_max_weight < max_weight and (
|
||||
max_weight -
|
||||
exchange_max_weight) >= (ave_workload * increment):
|
||||
max_weight = exchange_max_weight
|
||||
cur_exchange_index = index
|
||||
next_exchange_index = next_index
|
||||
|
||||
return cur_exchange_index, next_exchange_index
|
||||
|
||||
def expert_exchange_between_devices(self,
|
||||
ave_workload,
|
||||
increment,
|
||||
cur_layer_result,
|
||||
com_between_devices,
|
||||
num_redundancy_expert,
|
||||
node_idx=0,
|
||||
per_node_device_num=0,
|
||||
is_node_redundant=False):
|
||||
|
||||
if is_node_redundant:
|
||||
cur_devices_result = cur_layer_result[node_idx *
|
||||
per_node_device_num:
|
||||
(node_idx + 1) *
|
||||
per_node_device_num]
|
||||
else:
|
||||
cur_devices_result = cur_layer_result
|
||||
|
||||
devices_total_weight = []
|
||||
for device in cur_devices_result:
|
||||
devices_total_weight.append(
|
||||
(device['total_load'], device['device_id'] - 1))
|
||||
|
||||
exchange_frequency = 100
|
||||
while exchange_frequency > 0:
|
||||
exchange_frequency -= 1
|
||||
devices_total_weight.sort(key=lambda x: x[0])
|
||||
max_weight_device_id = devices_total_weight[-1][1]
|
||||
exchange = False
|
||||
for index in range(0, len(devices_total_weight) - 1):
|
||||
min_weight_device_id = devices_total_weight[index][1]
|
||||
if min_weight_device_id not in com_between_devices[
|
||||
max_weight_device_id]:
|
||||
cur_exchanged_expert_id = list(
|
||||
com_between_devices[max_weight_device_id].values())
|
||||
next_exchanged_expert_id = list(
|
||||
com_between_devices[min_weight_device_id].values())
|
||||
|
||||
cur_exchange_index, next_exchange_index = self.two_device_exchange_experts(
|
||||
cur_layer_result[max_weight_device_id],
|
||||
cur_layer_result[min_weight_device_id],
|
||||
cur_exchanged_expert_id, next_exchanged_expert_id,
|
||||
ave_workload, increment, num_redundancy_expert)
|
||||
|
||||
if cur_exchange_index != -1:
|
||||
self.exchange_expert(cur_exchange_index,
|
||||
next_exchange_index,
|
||||
max_weight_device_id,
|
||||
min_weight_device_id,
|
||||
cur_layer_result,
|
||||
com_between_devices)
|
||||
|
||||
devices_total_weight[-1] = (
|
||||
cur_layer_result[max_weight_device_id]
|
||||
['total_load'], max_weight_device_id)
|
||||
devices_total_weight[index] = (
|
||||
cur_layer_result[min_weight_device_id]
|
||||
['total_load'], min_weight_device_id)
|
||||
exchange = True
|
||||
break
|
||||
|
||||
if not exchange:
|
||||
break
|
||||
|
||||
def exchange_experts(self, layer_result, layer_com_between_devices,
|
||||
num_nodes, device_num, is_node_redundant,
|
||||
ave_workload, increment, num_redundancy_expert,
|
||||
org_deployment):
|
||||
|
||||
global_deployment = []
|
||||
|
||||
if is_node_redundant:
|
||||
per_node_device_num = self.safe_exact_divide(device_num, num_nodes)
|
||||
for node_idx in range(num_nodes):
|
||||
self.expert_exchange_between_devices(
|
||||
ave_workload, increment, layer_result,
|
||||
layer_com_between_devices, num_redundancy_expert, node_idx,
|
||||
per_node_device_num, is_node_redundant)
|
||||
else:
|
||||
self.expert_exchange_between_devices(ave_workload, increment,
|
||||
layer_result,
|
||||
layer_com_between_devices,
|
||||
num_redundancy_expert)
|
||||
|
||||
max_workload = 0
|
||||
for box in layer_result:
|
||||
global_deployment.append(box['assigned_experts'])
|
||||
if max_workload < box['total_load']:
|
||||
max_workload = box['total_load']
|
||||
|
||||
global_deployment = np.array(global_deployment)
|
||||
|
||||
return global_deployment, max_workload
|
||||
|
||||
def count_elements(self, lst):
|
||||
count = 0
|
||||
for item in lst:
|
||||
if isinstance(item, list):
|
||||
count += self.count_elements(item)
|
||||
else:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
@staticmethod
|
||||
def constraint_expert_local_exchange(current_expert_table,
|
||||
global_deployment):
|
||||
for layer_id in range(len(global_deployment)):
|
||||
for card_id in range(len(global_deployment[layer_id])):
|
||||
current_list = [
|
||||
int(x) for x in current_expert_table[layer_id][card_id]
|
||||
]
|
||||
new_list = [
|
||||
int(x) for x in global_deployment[layer_id][card_id]
|
||||
]
|
||||
num = len(new_list)
|
||||
|
||||
new_index = [-1] * num
|
||||
new_result = [-1] * num
|
||||
remaining_elements = []
|
||||
|
||||
for i in range(num):
|
||||
flag = True
|
||||
for j in range(num):
|
||||
if new_list[i] == current_list[j] and new_index[
|
||||
j] == -1:
|
||||
new_index[j] = 0
|
||||
new_result[j] = current_list[j]
|
||||
flag = False
|
||||
break
|
||||
if flag:
|
||||
remaining_elements.append(new_list[i])
|
||||
|
||||
index = 0
|
||||
for k in range(num):
|
||||
if new_result[k] == -1:
|
||||
new_result[k] = remaining_elements[index]
|
||||
index += 1
|
||||
|
||||
global_deployment[layer_id][card_id] = new_result
|
||||
|
||||
return global_deployment
|
||||
|
||||
def rebalance_experts(self,
|
||||
current_expert_table,
|
||||
expert_workload,
|
||||
is_node_redundant=False,
|
||||
increment=0.01):
|
||||
info = DynamicTable()
|
||||
info.workload_table = expert_workload.numpy()
|
||||
info.placement_table = current_expert_table.numpy()
|
||||
assert info.workload_table is not None
|
||||
layer_num, num_npus, experts_per_npu = info.workload_table.shape
|
||||
expert_ids, counts = np.unique(info.placement_table[0],
|
||||
return_counts=True)
|
||||
num_redundancy_expert = self.get_redundant_num(num_npus, counts)
|
||||
num_original_expert = len(expert_ids)
|
||||
layer_workloads = self.add_redundant(info.placement_table,
|
||||
info.workload_table,
|
||||
num_original_expert)
|
||||
max_heat_per_layer_before = self.calculate_max_heat_per_layer(
|
||||
info.workload_table, layer_num)
|
||||
npu_heat_all_origin = sum(max_heat_per_layer_before)
|
||||
|
||||
num_node = self.safe_exact_divide(num_npus, 8)
|
||||
layer_num = layer_workloads.shape[0]
|
||||
expert_num = layer_workloads.shape[1]
|
||||
expert_from_device = np.zeros((layer_num, num_original_expert))
|
||||
|
||||
if num_original_expert != expert_num:
|
||||
raise ValueError(
|
||||
f"The number of original experts ({num_original_expert}) must match expert_num ({expert_num})"
|
||||
)
|
||||
|
||||
if num_npus <= 0:
|
||||
raise ValueError("The number of NPUs must be greater than 0")
|
||||
|
||||
if num_npus < num_redundancy_expert:
|
||||
raise ValueError(
|
||||
f"The number of NPUs ({num_npus}) must be greater than or equal to the number of redundant experts ({num_redundancy_expert})"
|
||||
)
|
||||
|
||||
global_deployment: list[list[list[int]]] = [[[]
|
||||
for _ in range(num_npus)]
|
||||
for _ in range(layer_num)]
|
||||
layer_initial_imbalance = self.calculate_initial_imbalance(
|
||||
info.placement_table, layer_workloads)
|
||||
max_heat_per_layer_after = np.zeros([layer_num])
|
||||
sum_num = 0
|
||||
for layer in range(layer_num):
|
||||
# print(f"Load imbalance ratio of layer {layer} under the new workload", layer_initial_imbalance[layer])
|
||||
if layer_initial_imbalance[layer] < 1.01:
|
||||
global_deployment[layer] = info.placement_table[layer]
|
||||
continue
|
||||
|
||||
ave_workload = self.safe_divide(np.sum(layer_workloads[layer]),
|
||||
num_npus)
|
||||
|
||||
rendun_pos: list[list[int]] = [[] for _ in range(num_npus)]
|
||||
existing_experts = set()
|
||||
for device_id, device in enumerate(info.placement_table[layer]):
|
||||
for index, expert_id in enumerate(device):
|
||||
if expert_id not in existing_experts:
|
||||
existing_experts.add(expert_id)
|
||||
expert_from_device[layer][expert_id] = device_id
|
||||
else:
|
||||
rendun_pos[device_id].append(index)
|
||||
|
||||
result, max_workload, com_between_devices = self.redundant_expert_deployment(
|
||||
layer_workloads[layer], info.placement_table[layer],
|
||||
expert_from_device[layer], num_node, is_node_redundant,
|
||||
rendun_pos)
|
||||
# print(layer, f"Imbalance Ratio after Redundancy Adjustment:", self.safe_divide(max_workload, ave_workload))
|
||||
|
||||
global_deployment[layer], new_max_workload = self.exchange_experts(
|
||||
result, com_between_devices, num_node, num_npus,
|
||||
is_node_redundant, ave_workload, increment,
|
||||
num_redundancy_expert, info.placement_table[layer])
|
||||
# print(layer, f"Imbalance Ratio after Swap Adjustment:", self.safe_divide(new_max_workload, ave_workload))
|
||||
|
||||
for device_id in range(num_npus):
|
||||
com_between_devices[device_id] = {
|
||||
key: value
|
||||
for key, value in com_between_devices[device_id].items()
|
||||
}
|
||||
sum_num += self.count_elements(com_between_devices[device_id])
|
||||
|
||||
max_heat_per_layer_after[layer] = max(
|
||||
result, key=lambda x: x['total_load'])['total_load']
|
||||
|
||||
layer_changed_ratio = []
|
||||
for layer_idx in range(layer_num):
|
||||
layer_changed_ratio.append(
|
||||
self.safe_divide(max_heat_per_layer_after[layer_idx],
|
||||
max_heat_per_layer_before[layer_idx]))
|
||||
|
||||
per_layer_priority = np.argsort(layer_changed_ratio)
|
||||
npu_heat_all_after = sum(max_heat_per_layer_after)
|
||||
|
||||
change = 0
|
||||
if npu_heat_all_after < 0.95 * npu_heat_all_origin:
|
||||
change = 1
|
||||
|
||||
new_global_deployment = self.constraint_expert_local_exchange(
|
||||
current_expert_table, global_deployment)
|
||||
|
||||
return change, per_layer_priority, np.array(
|
||||
new_global_deployment).tolist()
|
||||
33
vllm_npu/eplb/core/policy/policy_factory.py
Normal file
33
vllm_npu/eplb/core/policy/policy_factory.py
Normal file
@@ -0,0 +1,33 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this factory.
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
from .policy_dynamic_ep import DynamicEplb
|
||||
from .policy_dynamic_ep_v2 import DynamicEplbV2
|
||||
from .policy_flashlb import FlashLB
|
||||
from .policy_random import RandomLoadBalance
|
||||
|
||||
|
||||
class PolicyFactory:
|
||||
|
||||
@staticmethod
|
||||
def generate_policy(policy_type: int, config: DynamicConfig) -> EplbPolicy:
|
||||
policy = {
|
||||
# Constraint applying Dynamic EPLB policy V2:
|
||||
# If there exists redundant expert:
|
||||
# only one redundant expert can be placed in one NPU and its physical expert index must be 0
|
||||
|
||||
# Applying greedy d2d expert weight update composing
|
||||
0:
|
||||
RandomLoadBalance, # RandomLoadBalance: shuffle last physical expert on NPU 1 and 3
|
||||
1:
|
||||
DynamicEplb, # Dynamic EPLB policy: overall expert replacement based on current moe load
|
||||
2:
|
||||
DynamicEplbV2, # Dynamic EPLB policy V2: expert replacement with constrained number of expert shuffle
|
||||
3:
|
||||
FlashLB, # FlashLB EPLB policy: expert replacement based on Joint Optimization, Multi-Shot Enhancement and Incremental Adjustment
|
||||
}
|
||||
policy_class = policy.get(policy_type, RandomLoadBalance)
|
||||
policy_instance = policy_class(config)
|
||||
if policy_type == 3:
|
||||
policy_instance.warm_up()
|
||||
return policy_instance
|
||||
651
vllm_npu/eplb/core/policy/policy_flashlb.py
Normal file
651
vllm_npu/eplb/core/policy/policy_flashlb.py
Normal file
@@ -0,0 +1,651 @@
|
||||
# Copyright Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
|
||||
import logging
|
||||
from collections import deque
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from numba import njit # type: ignore
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
numba_logger = logging.getLogger("numba")
|
||||
numba_logger.setLevel(logging.WARNING)
|
||||
|
||||
|
||||
@njit
|
||||
def compute_piece_counts(X, P, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
S = P - N
|
||||
pieces = np.ones(N, dtype=np.int32)
|
||||
unit = X / pieces # unit[i, j] = X[i, j] / pieces[j]
|
||||
|
||||
for _ in range(S):
|
||||
deltas = np.zeros(N, dtype=np.float32)
|
||||
for i in range(n_stage):
|
||||
# Find top1 and top2
|
||||
idx1 = -1
|
||||
idx2 = -1
|
||||
val1 = -1.0
|
||||
val2 = -1.0
|
||||
for j in range(N):
|
||||
v = unit[i, j]
|
||||
if v > val1:
|
||||
val2 = val1
|
||||
idx2 = idx1
|
||||
val1 = v
|
||||
idx1 = j
|
||||
elif v > val2:
|
||||
val2 = v
|
||||
idx2 = j
|
||||
|
||||
origin = unit[i, idx1]
|
||||
secv = unit[i, idx2]
|
||||
alt = X[i, idx1] / (pieces[idx1] + 1)
|
||||
delta = origin - (alt if alt > secv else secv)
|
||||
deltas[idx1] += delta * stage_weights[i] if np.any(
|
||||
delta) != 0 else stage_weights[i]
|
||||
|
||||
max_idx = np.argmax(deltas)
|
||||
pieces[max_idx] += 1
|
||||
for i in range(n_stage):
|
||||
unit[i, max_idx] = X[i, max_idx] / pieces[max_idx]
|
||||
|
||||
# Compute max load
|
||||
max_load = 0.0
|
||||
for j in range(N):
|
||||
total = 0.0
|
||||
for i in range(n_stage):
|
||||
total += unit[i, j]
|
||||
if total > max_load:
|
||||
max_load = total
|
||||
|
||||
return pieces
|
||||
|
||||
|
||||
@njit
|
||||
def jsq_placement(X, pieces, M, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
total_piece = pieces.sum()
|
||||
num_per_group = total_piece // M
|
||||
|
||||
# 1. Compute unit_hotness
|
||||
unit_hotness = np.empty((n_stage, N), dtype=np.float32)
|
||||
for i in range(N):
|
||||
if pieces[i] > 0:
|
||||
for s in range(n_stage):
|
||||
unit_hotness[s, i] = X[s, i] / pieces[i]
|
||||
else:
|
||||
for s in range(n_stage):
|
||||
unit_hotness[s, i] = 0.0
|
||||
|
||||
# 2. Sort by total hotness
|
||||
scores = np.zeros(N, dtype=np.float32)
|
||||
for i in range(N):
|
||||
for s in range(n_stage):
|
||||
scores[i] += unit_hotness[s, i]
|
||||
idx = np.argsort(-scores)
|
||||
|
||||
# 3. Initialization
|
||||
loads = np.zeros((n_stage, M), dtype=np.float32)
|
||||
dev_phy_exp_n = np.zeros(M, dtype=np.int32)
|
||||
deployment = -np.ones((M, num_per_group), dtype=np.int32)
|
||||
dep_ptr = np.zeros(M, dtype=np.int32)
|
||||
|
||||
# 4. Main loop
|
||||
for t in range(N):
|
||||
i = idx[t]
|
||||
used_device = list()
|
||||
for _ in range(pieces[i]):
|
||||
# 4.1 Construct w vector
|
||||
w = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
w[s] = unit_hotness[s, i]
|
||||
|
||||
# 4.2 Compute stage-level maximum load
|
||||
stage_max = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
max_val = loads[s, 0]
|
||||
for k in range(1, M):
|
||||
if loads[s, k] > max_val:
|
||||
max_val = loads[s, k]
|
||||
stage_max[s] = max_val
|
||||
|
||||
# 4.3 Compute denominator
|
||||
denom = np.empty(n_stage, dtype=np.float32)
|
||||
for s in range(n_stage):
|
||||
sum_tmp = 0.0
|
||||
for j in range(M):
|
||||
sum_tmp += loads[s, j] + w[s]
|
||||
denom[s] = sum_tmp / M + 1e-2
|
||||
|
||||
# 4.4 Find best device j
|
||||
best_j = -1
|
||||
best_val = 1e30
|
||||
for j in range(M):
|
||||
if dev_phy_exp_n[j] >= num_per_group:
|
||||
continue
|
||||
if j in used_device:
|
||||
continue
|
||||
score = 0.0
|
||||
for s in range(n_stage):
|
||||
tmp_sj = loads[s, j] + w[s]
|
||||
numer_sj = tmp_sj if tmp_sj > stage_max[s] else stage_max[s]
|
||||
score += stage_weights[s] * (numer_sj / denom[s])
|
||||
if score < best_val:
|
||||
best_val = score
|
||||
best_j = j
|
||||
if best_j == -1:
|
||||
continue
|
||||
|
||||
used_device.append(best_j)
|
||||
|
||||
# 4.5 Update status
|
||||
for s in range(n_stage):
|
||||
loads[s, best_j] += w[s]
|
||||
ptr = dep_ptr[best_j]
|
||||
deployment[best_j, ptr] = i
|
||||
dep_ptr[best_j] += 1
|
||||
dev_phy_exp_n[best_j] += 1
|
||||
|
||||
# Handle remaining -1 values: fill with random elements from range(N) not in current column
|
||||
for rank in range(M):
|
||||
for col in range(num_per_group):
|
||||
if deployment[rank, col] == -1:
|
||||
# Get elements already in current column
|
||||
current_rank_elements = set(deployment[rank, :])
|
||||
# Filter elements from range(N) not in current column
|
||||
available = [
|
||||
x for x in range(N) if x not in current_rank_elements
|
||||
]
|
||||
# Randomly select an available element to fill
|
||||
if len(available) > 0:
|
||||
rand_idx = np.random.randint(0, len(available))
|
||||
deployment[rank, col] = available[rand_idx]
|
||||
elif N > 0:
|
||||
# All unique experts are already in this rank's column, so we can pick any expert randomly.
|
||||
deployment[rank, col] = np.random.randint(0, N)
|
||||
|
||||
return deployment
|
||||
|
||||
|
||||
@njit
|
||||
def slice_values(X, pieces):
|
||||
total_len = 0
|
||||
for i in range(X.shape[0]):
|
||||
total_len += pieces[i]
|
||||
result = np.empty(total_len, dtype=np.float32)
|
||||
idx = 0
|
||||
for i in range(X.shape[0]):
|
||||
val = X[i] / pieces[i]
|
||||
for _ in range(pieces[i]):
|
||||
result[idx] = val
|
||||
idx += 1
|
||||
return result
|
||||
|
||||
|
||||
@njit
|
||||
def group_based_adaptive_bloating_kernel(X, P, M, simulated_pieces,
|
||||
simulated_deployment, stage_weights):
|
||||
n_stage, N = X.shape
|
||||
num_group = P // M
|
||||
|
||||
X_all = np.zeros(N, dtype=np.float32)
|
||||
for i in range(n_stage):
|
||||
for j in range(N):
|
||||
X_all[j] += X[i, j]
|
||||
|
||||
sort_idx = np.argsort(np.negative(X_all))
|
||||
X_sorted = X[:, sort_idx]
|
||||
|
||||
unit_load = np.empty(N, dtype=np.float32)
|
||||
for j in range(N):
|
||||
unit_load[j] = X_all[j] / simulated_pieces[j]
|
||||
|
||||
flat_deployment = simulated_deployment.reshape(-1)
|
||||
simulated_load = np.zeros(M, dtype=np.float32)
|
||||
for i in range(flat_deployment.shape[0]):
|
||||
simulated_load[i // (flat_deployment.shape[0] //
|
||||
M)] += unit_load[flat_deployment[i]]
|
||||
|
||||
slice_vals = slice_values(X_all, simulated_pieces)
|
||||
sorted_slices = np.sort(slice_vals)[::-1]
|
||||
simulated_slopes = (sorted_slices[:-M + 1] - sorted_slices[M - 1:]) / M
|
||||
|
||||
cumulative_slices_used = np.zeros(N, dtype=np.int32)
|
||||
acc = 0
|
||||
for i in range(N):
|
||||
acc += simulated_pieces[sort_idx[i]]
|
||||
cumulative_slices_used[i] = acc
|
||||
|
||||
group_boundary_indices = np.zeros(num_group, dtype=np.int32)
|
||||
for i in range(1, num_group + 1):
|
||||
for j in range(N):
|
||||
if cumulative_slices_used[j] >= i * M:
|
||||
group_boundary_indices[i - 1] = j
|
||||
break
|
||||
|
||||
slices_used_per_group = np.zeros(num_group, dtype=np.int32)
|
||||
slices_used_per_group[0] = group_boundary_indices[0]
|
||||
for i in range(1, num_group):
|
||||
slices_used_per_group[
|
||||
i] = group_boundary_indices[i] - group_boundary_indices[i - 1]
|
||||
slices_used_per_group = M - slices_used_per_group
|
||||
|
||||
loads = np.zeros(M, dtype=np.float32)
|
||||
pieces = np.zeros(N, dtype=np.int32)
|
||||
num_remain_slice = P - N
|
||||
current_idx = 0
|
||||
|
||||
for g in range(num_group):
|
||||
window = X_sorted[:, current_idx:current_idx + 2 * M]
|
||||
low = max(0, current_idx + M - N)
|
||||
high = min(num_remain_slice, M - 1)
|
||||
|
||||
while (high - low) > 1:
|
||||
mid = int((high + low) // 2)
|
||||
keep = M - mid
|
||||
current_group = window[:, :keep]
|
||||
current_pieces = compute_piece_counts(current_group, M,
|
||||
stage_weights)
|
||||
current_pieces = np.maximum(current_pieces, 1)
|
||||
current_slice = slice_values(current_group.sum(0), current_pieces)
|
||||
current_slice_sorted = np.sort(current_slice)
|
||||
current_loads = loads + current_slice_sorted
|
||||
current_max: np.float32 = np.max(current_loads)
|
||||
current_min: np.float32 = np.min(current_loads)
|
||||
current_slope = (current_max - current_min) / M
|
||||
next_slope: np.float32 = np.max(simulated_slopes[current_idx +
|
||||
keep:])
|
||||
|
||||
if abs(current_slope) > abs(next_slope):
|
||||
low = mid
|
||||
else:
|
||||
high = mid
|
||||
|
||||
S = high
|
||||
keep = M - S
|
||||
current_group = window[:, :keep]
|
||||
current_pieces = compute_piece_counts(current_group, M, stage_weights)
|
||||
|
||||
for i in range(keep):
|
||||
pieces[sort_idx[current_idx + i]] = current_pieces[i]
|
||||
|
||||
current_slice = slice_values(current_group.sum(0), current_pieces)
|
||||
current_slice_sorted = np.sort(current_slice)
|
||||
loads += current_slice_sorted
|
||||
loads = np.sort(loads)[::-1]
|
||||
|
||||
current_idx += keep
|
||||
num_remain_slice -= S
|
||||
|
||||
return pieces
|
||||
|
||||
|
||||
@njit
|
||||
def compute_objective(deployment, X, pieces):
|
||||
M, P = deployment.shape
|
||||
loads = np.zeros(M)
|
||||
|
||||
for i in range(M):
|
||||
for j in range(P):
|
||||
expert = deployment[i, j]
|
||||
if pieces[expert] == 0:
|
||||
continue
|
||||
loads[i] += X[expert] / pieces[expert]
|
||||
|
||||
mean_load = np.mean(loads)
|
||||
max_load: np.float32 = np.max(loads)
|
||||
obj = max_load / mean_load
|
||||
return obj, loads
|
||||
|
||||
|
||||
@njit
|
||||
def auto_fix_new_placement(old_placement, new_placement):
|
||||
"""
|
||||
Adjust the new_placement matrix to ensure elements (including duplicates) that exist in both
|
||||
old_placement and new_placement remain in their original positions from old_placement.
|
||||
New elements (unique to new_placement) will fill the remaining empty positions.
|
||||
|
||||
Args:
|
||||
old_placement: Old deployment matrix with shape (num_ranks, num_experts)
|
||||
new_placement: New deployment matrix to be fixed, must have the same shape as old_placement
|
||||
|
||||
Returns:
|
||||
fixed_new: adjusted version of the new_placement matrix
|
||||
"""
|
||||
num_ranks, num_experts = old_placement.shape
|
||||
fixed_new = np.empty_like(new_placement)
|
||||
|
||||
max_expert_old = old_placement.max() if num_experts > 0 else 0
|
||||
max_expert_new = new_placement.max() if num_experts > 0 else 0
|
||||
max_expert = max(max_expert_old, max_expert_new)
|
||||
|
||||
for rank_id in range(num_ranks):
|
||||
old_row = old_placement[rank_id]
|
||||
new_row = new_placement[rank_id]
|
||||
|
||||
index_array = np.full((max_expert + 1, num_experts),
|
||||
-1,
|
||||
dtype=np.int32)
|
||||
count_array = np.zeros(max_expert + 1, dtype=np.int32)
|
||||
|
||||
for idx in range(num_experts):
|
||||
val = old_row[idx]
|
||||
if val >= 0 and val <= max_expert:
|
||||
pos = count_array[val]
|
||||
index_array[val, pos] = idx
|
||||
count_array[val] += 1
|
||||
|
||||
old_counter = np.zeros(max_expert + 1, dtype=np.int32)
|
||||
for idx in range(num_experts):
|
||||
val = old_row[idx]
|
||||
if val >= 0 and val <= max_expert:
|
||||
old_counter[val] += 1
|
||||
|
||||
retain_elements = np.empty(num_experts, dtype=new_placement.dtype)
|
||||
new_elements = np.empty(num_experts, dtype=new_placement.dtype)
|
||||
retain_ptr = 0
|
||||
new_ptr = 0
|
||||
|
||||
for val in new_row:
|
||||
if val >= 0 and val <= max_expert and old_counter[val] > 0:
|
||||
retain_elements[retain_ptr] = val
|
||||
retain_ptr += 1
|
||||
old_counter[val] -= 1
|
||||
else:
|
||||
new_elements[new_ptr] = val
|
||||
new_ptr += 1
|
||||
|
||||
current_fixed = np.full(num_experts, -1, dtype=new_placement.dtype)
|
||||
|
||||
for i in range(retain_ptr):
|
||||
val = retain_elements[i]
|
||||
if val >= 0 and val <= max_expert:
|
||||
pos = count_array[val] - 1
|
||||
if pos >= 0:
|
||||
idx = index_array[val, pos]
|
||||
current_fixed[idx] = val
|
||||
count_array[val] -= 1
|
||||
|
||||
empty_indices = np.empty(num_experts, dtype=np.int32)
|
||||
empty_ptr = 0
|
||||
for idx in range(num_experts):
|
||||
if current_fixed[idx] == -1:
|
||||
empty_indices[empty_ptr] = idx
|
||||
empty_ptr += 1
|
||||
|
||||
for i in range(new_ptr):
|
||||
if i < empty_ptr:
|
||||
current_fixed[empty_indices[i]] = new_elements[i]
|
||||
|
||||
fixed_new[rank_id] = current_fixed
|
||||
|
||||
return fixed_new
|
||||
|
||||
|
||||
class FlashLB(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
self.par_history: Dict[int, float] = {}
|
||||
self.hotness_window: Dict[int, deque[float]] = {}
|
||||
self.max_stage_window = (config.max_stage_window if hasattr(
|
||||
config, "max_stage_window") else 1)
|
||||
self.buffer_expert_layer_num = (
|
||||
config.buffer_expert_layer_num if hasattr(
|
||||
config, "buffer_expert_layer_num") else 58)
|
||||
self.threshold_ratio = (config.threshold_ratio if hasattr(
|
||||
config, "threshold_ratio") else 0)
|
||||
|
||||
def compute_expert_hotness(self, num_of_expert: int,
|
||||
deployment: np.ndarray, rank_load: np.ndarray):
|
||||
hotness = np.zeros(num_of_expert, dtype=rank_load.dtype)
|
||||
deployment_flat = deployment.ravel()
|
||||
rank_load_flat = rank_load.ravel()
|
||||
np.add.at(hotness, deployment_flat, rank_load_flat)
|
||||
return hotness
|
||||
|
||||
def compute_rank_load(self, deployment: np.ndarray, hotness: np.ndarray):
|
||||
n_stage, N = hotness.shape
|
||||
if np.any(deployment < 0):
|
||||
print(f"Invalid deployment with negative values: {deployment}")
|
||||
raise ValueError("Deployment table contains negative values.")
|
||||
counts = np.bincount(deployment.reshape(-1), minlength=N)
|
||||
unit_hotness = np.divide(hotness,
|
||||
counts,
|
||||
out=np.zeros_like(hotness, dtype=float),
|
||||
where=counts != 0)
|
||||
stage_par = np.zeros(n_stage)
|
||||
for i in range(n_stage):
|
||||
stage_load = unit_hotness[i][deployment].sum(-1)
|
||||
stage_par[i] = stage_load.max() / stage_load.mean()
|
||||
return stage_par.mean()
|
||||
|
||||
def group_based_adaptive_bloating(self,
|
||||
X,
|
||||
P,
|
||||
M,
|
||||
stage_weights=None,
|
||||
recorsive=False):
|
||||
n_stage, N = X.shape
|
||||
if stage_weights is None:
|
||||
stage_weights = np.ones(n_stage, dtype=np.float32)
|
||||
|
||||
if recorsive:
|
||||
(
|
||||
simulated_deployment,
|
||||
simulated_pieces,
|
||||
) = self.group_based_adaptive_bloating(X,
|
||||
P,
|
||||
M,
|
||||
stage_weights,
|
||||
recorsive=False)
|
||||
else:
|
||||
simulated_pieces = compute_piece_counts(X, P, stage_weights)
|
||||
simulated_deployment = jsq_placement(X, simulated_pieces, M,
|
||||
stage_weights)
|
||||
|
||||
pieces = group_based_adaptive_bloating_kernel(
|
||||
X.astype(np.float32),
|
||||
P,
|
||||
M,
|
||||
simulated_pieces.astype(np.int32),
|
||||
simulated_deployment.astype(np.int32),
|
||||
stage_weights.astype(np.float32),
|
||||
)
|
||||
|
||||
deployment = jsq_placement(X, pieces, M, stage_weights)
|
||||
|
||||
X_all = X.sum(0)
|
||||
unit_load = np.divide(X_all,
|
||||
pieces,
|
||||
out=np.zeros_like(X_all, dtype=float),
|
||||
where=pieces != 0)
|
||||
load = unit_load[deployment].sum(-1)
|
||||
|
||||
sim_unit_load = X_all / simulated_pieces
|
||||
sim_load = sim_unit_load[simulated_deployment].sum(-1)
|
||||
|
||||
if load.max() > sim_load.max():
|
||||
return simulated_deployment, simulated_pieces
|
||||
return deployment, pieces
|
||||
|
||||
def need_update(self, current_par, layer_id=0):
|
||||
threshold = self.par_history.get(layer_id, 0.0)
|
||||
return current_par >= self.threshold_ratio * threshold
|
||||
|
||||
def compute_stage_weight(self, hotness):
|
||||
n_stage = hotness.shape[0]
|
||||
stage_weights = np.zeros(n_stage)
|
||||
for i in range(n_stage):
|
||||
stage_weights[i] = hotness[i].sum()
|
||||
|
||||
stage_weights = stage_weights / stage_weights.max()
|
||||
return stage_weights
|
||||
|
||||
def rebalance_layer(self, deployment, hotness, layer_id=0):
|
||||
num_rank, expert_per_rank = deployment.shape
|
||||
num_expert = np.unique(deployment.reshape(-1)).shape[0]
|
||||
num_of_redundant_expert = num_rank * expert_per_rank - num_expert
|
||||
|
||||
current_par = self.compute_rank_load(deployment, hotness)
|
||||
|
||||
if not self.need_update(current_par, layer_id):
|
||||
return deployment, current_par, current_par
|
||||
|
||||
stage_weights = self.compute_stage_weight(hotness)
|
||||
new_deployment, _ = self.group_based_adaptive_bloating(
|
||||
hotness,
|
||||
num_expert + num_of_redundant_expert,
|
||||
num_rank,
|
||||
stage_weights,
|
||||
recorsive=False,
|
||||
)
|
||||
if np.any(new_deployment < 0):
|
||||
print(f"{new_deployment=}")
|
||||
new_par = self.compute_rank_load(new_deployment, hotness)
|
||||
|
||||
return new_deployment, new_par, current_par
|
||||
|
||||
def register_hotness(self, deployment, rank_load, num_layer, num_expert):
|
||||
for layer in range(num_layer):
|
||||
if layer not in self.hotness_window:
|
||||
self.hotness_window[layer] = deque(
|
||||
maxlen=self.max_stage_window)
|
||||
hotness = self.compute_expert_hotness(num_expert,
|
||||
deployment[layer],
|
||||
rank_load[layer])
|
||||
self.hotness_window[layer].append(hotness)
|
||||
|
||||
def compress_by_avg_pooling_fast_nd(self, arr, m):
|
||||
n, d = arr.shape
|
||||
idx = (np.arange(n) * m // n)
|
||||
result = np.zeros((m, d))
|
||||
counts = np.zeros((m, 1))
|
||||
np.add.at(result, idx, arr)
|
||||
np.add.at(counts, idx, 1)
|
||||
return result / counts
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
current_deployment = np.array(current_expert_table)
|
||||
expert_workload = np.array(expert_workload)
|
||||
expert_workload += 1
|
||||
num_layer = expert_workload.shape[0]
|
||||
num_expert = np.unique(current_expert_table[0].reshape(-1)).shape[0]
|
||||
self.register_hotness(current_deployment, expert_workload, num_layer,
|
||||
num_expert)
|
||||
|
||||
new_deployment = current_deployment.copy()
|
||||
|
||||
layers_need_update = np.arange(num_layer)
|
||||
|
||||
new_par = np.zeros(layers_need_update.shape[0])
|
||||
current_par = np.zeros(layers_need_update.shape[0])
|
||||
for i, layer in enumerate(layers_need_update):
|
||||
hotness = np.array(self.hotness_window[layer])
|
||||
if hotness.shape[0] > self.max_stage_window:
|
||||
hotness = self.compress_by_avg_pooling_fast_nd(
|
||||
hotness, self.max_stage_window)
|
||||
|
||||
(
|
||||
new_deployment[layer],
|
||||
new_par[i],
|
||||
current_par[i],
|
||||
) = self.rebalance_layer(current_deployment[layer],
|
||||
hotness,
|
||||
layer_id=layer)
|
||||
|
||||
priority = new_par / current_par
|
||||
priority_idx = np.argsort(priority)
|
||||
priority_idx = priority_idx[priority[priority_idx] <
|
||||
1][:self.buffer_expert_layer_num]
|
||||
|
||||
if np.all(expert_workload == 1):
|
||||
for _, layer in enumerate(layers_need_update):
|
||||
self.hotness_window[layer].pop()
|
||||
return False, np.array([], dtype=int), current_deployment
|
||||
change = len(priority_idx) > 0
|
||||
if change:
|
||||
for idx in priority_idx:
|
||||
self.par_history[layers_need_update[idx]] = new_par[idx]
|
||||
|
||||
layers_need_update = priority_idx
|
||||
deployment = current_deployment
|
||||
for layer in layers_need_update:
|
||||
deployment[layer] = auto_fix_new_placement(
|
||||
current_deployment[layer], new_deployment[layer])
|
||||
|
||||
return change, layers_need_update, deployment
|
||||
|
||||
|
||||
def generate_layered_experts(num_layers=58,
|
||||
layer_shape=(32, 9),
|
||||
expert_min=0,
|
||||
expert_max=255):
|
||||
"""
|
||||
Generate expert deployment matrix meeting the following conditions:
|
||||
- Total of num_layers layers
|
||||
- Each layer has shape layer_shape (32,9)
|
||||
- Each expert from expert_min to expert_max (0 to 255) appears at least once in each layer
|
||||
|
||||
Args:
|
||||
num_layers: Number of layers, default 58
|
||||
layer_shape: Shape of a single layer, default (32,9)
|
||||
expert_min: Minimum expert ID, default 0
|
||||
expert_max: Maximum expert ID, default 255
|
||||
Returns:
|
||||
torch.Tensor: Tensor with shape (num_layers, layer_shape[0], layer_shape[1])
|
||||
"""
|
||||
# 1. Basic parameter calculation
|
||||
expert_num = expert_max - expert_min + 1 # Total number of experts: 256 (0~255)
|
||||
layer_total = layer_shape[0] * layer_shape[
|
||||
1] # Total elements in a single layer: 32*9=288
|
||||
extra_slots = layer_total - expert_num # Number of random positions to fill per layer: 288-256=32
|
||||
|
||||
# 2. Verify feasibility (total elements must be ≥ number of experts to cover all experts)
|
||||
assert layer_total >= expert_num, (
|
||||
f"Number of elements in a single layer {layer_total} < number of experts {expert_num}, "
|
||||
"cannot cover all experts")
|
||||
|
||||
# 3. Generate layers one by one
|
||||
layers = []
|
||||
for _ in range(num_layers):
|
||||
# 3.1 Generate "complete expert sequence" (ensure each expert from 0 to 255 is included)
|
||||
full_experts = torch.arange(expert_min,
|
||||
expert_max + 1,
|
||||
dtype=torch.int64) # shape (256,)
|
||||
|
||||
# 3.2 Generate "supplementary random experts" (fill remaining 32 positions, randomly selected from 0~255)
|
||||
extra_experts = torch.randint(expert_min,
|
||||
expert_max + 1,
|
||||
size=(extra_slots, ),
|
||||
dtype=torch.int64) # shape (32,)
|
||||
|
||||
# 3.3 Concatenate and shuffle (ensure random distribution of experts in each layer)
|
||||
layer_flat = torch.cat([full_experts, extra_experts],
|
||||
dim=0) # shape (288,)
|
||||
# Shuffle order (use randperm to generate random indices to avoid repeated shuffling issues)
|
||||
shuffle_idx = torch.randperm(layer_flat.shape[0])
|
||||
layer_shuffled = layer_flat[shuffle_idx]
|
||||
|
||||
# 3.4 Reshape to layer_shape (32,9)
|
||||
layer = layer_shuffled.reshape(layer_shape)
|
||||
layers.append(layer)
|
||||
|
||||
# 4. Stack all layers to get the final tensor
|
||||
return torch.stack(layers, dim=0) # shape (58,32,9)
|
||||
|
||||
|
||||
def warm_up():
|
||||
exam_config = DynamicConfig()
|
||||
exam_config.ep_worldsize = 32
|
||||
exam_config.num_die_per_host = 16
|
||||
algo = FlashLB(exam_config)
|
||||
# Generate target tensor
|
||||
expert_tensor = generate_layered_experts(num_layers=58,
|
||||
layer_shape=(32, 9))
|
||||
|
||||
algo.rebalance_experts(expert_tensor, torch.randint(1, 1000, (58, 32, 9)))
|
||||
30
vllm_npu/eplb/core/policy/policy_random.py
Normal file
30
vllm_npu/eplb/core/policy/policy_random.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# Copyright # Copyright Huawei Technologies Co., Ltd. 2023-2024. All rights reserved.
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/24069 is merged in vllm. Remove this policy.
|
||||
import copy
|
||||
import random
|
||||
|
||||
from .policy_abstract import DynamicConfig, EplbPolicy
|
||||
|
||||
random.seed(42)
|
||||
|
||||
|
||||
class RandomLoadBalance(EplbPolicy):
|
||||
|
||||
def __init__(self, config: DynamicConfig):
|
||||
super().__init__(config)
|
||||
|
||||
def rebalance_experts(self, current_expert_table, expert_workload):
|
||||
new_table = copy.deepcopy(current_expert_table)
|
||||
num_layers = len(current_expert_table)
|
||||
|
||||
for i in range(num_layers):
|
||||
# randomly choose two card
|
||||
# indices = random.sample(range(num_card), 2)
|
||||
indices = [3, 1]
|
||||
|
||||
# swap redundant experts
|
||||
expert_id_to_exchange = new_table[i][indices[0]][-1].clone()
|
||||
new_table[i][indices[0]][-1] = new_table[i][indices[1]][-1]
|
||||
new_table[i][indices[1]][-1] = expert_id_to_exchange
|
||||
|
||||
return 1, [-i for i in range(num_layers)], new_table
|
||||
209
vllm_npu/eplb/eplb_updator.py
Normal file
209
vllm_npu/eplb/eplb_updator.py
Normal file
@@ -0,0 +1,209 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove this updator.
|
||||
import numpy
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import vllm.envs as envs
|
||||
from vllm.logger import logger
|
||||
|
||||
from vllm_npu.eplb.core.eplb_utils import EPLBParamUtils
|
||||
from vllm_npu.eplb.core.eplb_worker import EplbProcess
|
||||
|
||||
|
||||
class EplbUpdator:
|
||||
|
||||
def __init__(self, ascend_config, loader, eplb_process: EplbProcess,
|
||||
process):
|
||||
self.ascend_config = ascend_config
|
||||
self.init_eplb(self.ascend_config.expert_map_path, process)
|
||||
self.eplb_loader = loader
|
||||
self.eplb_process = eplb_process
|
||||
self.shared_dict = self.eplb_process.shared_dict
|
||||
|
||||
def set_adaptor(self, adaptor):
|
||||
self.adaptor = adaptor
|
||||
self.num_moe_layers = self.adaptor.num_moe_layers
|
||||
self.global_expert_num = self.adaptor.global_expert_num
|
||||
|
||||
def init_eplb(self, expert_map_path, process):
|
||||
self.rank_id = dist.get_rank()
|
||||
self.num_expert_load_gather = 10
|
||||
self.periodic_load_gather = True
|
||||
self.num_iterations_eplb_update: torch.int64 = self.ascend_config.num_iterations_eplb_update
|
||||
EPLBParamUtils.check_iterations(self.num_iterations_eplb_update)
|
||||
self.expert_map_path = expert_map_path
|
||||
self.expert_map_record_path = self.ascend_config.expert_map_record_path
|
||||
|
||||
try:
|
||||
if not envs.VLLM_ALLOW_EXPERT_LOAD_COLLECTING:
|
||||
self.num_expert_load_gather = self.num_iterations_eplb_update
|
||||
self.periodic_load_gather = False
|
||||
except Exception:
|
||||
self.num_expert_load_gather = self.num_iterations_eplb_update
|
||||
self.periodic_load_gather = False
|
||||
|
||||
self.expert_map_initialized = False
|
||||
self.gate_eplb = self.ascend_config.gate_eplb
|
||||
|
||||
self.reqs = []
|
||||
self.update_info_all = []
|
||||
|
||||
self.cur_iterations: torch.int64 = 0
|
||||
|
||||
self.num_wait_worker_iterations: torch.int64 = self.ascend_config.num_wait_worker_iterations
|
||||
EPLBParamUtils.check_iterations(self.num_wait_worker_iterations)
|
||||
|
||||
self.process = process
|
||||
|
||||
logger.info(
|
||||
f"[ModelRunner] Launched EPLB process (pid={self.process.pid})")
|
||||
|
||||
def update_iteration(self):
|
||||
self.cur_iterations += 1
|
||||
if self.cur_iterations == (self.num_iterations_eplb_update + \
|
||||
self.num_wait_worker_iterations + self.num_moe_layers):
|
||||
if self.expert_map_record_path is not None:
|
||||
self.adaptor._export_tensor_to_file(
|
||||
self.shared_dict["expert_maps"],
|
||||
self.expert_map_record_path)
|
||||
|
||||
self.adaptor.model.clear_all_moe_loads()
|
||||
if not self.gate_eplb:
|
||||
self.cur_iterations = 0
|
||||
|
||||
def get_update_info_flag(self):
|
||||
return self.cur_iterations == (self.num_iterations_eplb_update +
|
||||
self.num_wait_worker_iterations - 1)
|
||||
|
||||
def wakeup_eplb_worker_flag(self):
|
||||
return self.cur_iterations == (self.num_iterations_eplb_update - 1)
|
||||
|
||||
def update_expert_weight_flag(self):
|
||||
weight_update_counter = self.cur_iterations - (
|
||||
self.num_iterations_eplb_update + self.num_wait_worker_iterations)
|
||||
return (weight_update_counter >= 0
|
||||
and weight_update_counter < self.num_moe_layers)
|
||||
|
||||
def get_init_expert_map(self):
|
||||
try:
|
||||
if not self.expert_map_initialized:
|
||||
self.shared_dict[
|
||||
"expert_maps"] = self.adaptor.get_init_expert_map_from_file(
|
||||
self.num_moe_layers, self.expert_map_path)
|
||||
self.expert_map_initialized = True
|
||||
except Exception as e:
|
||||
logger.warning(f"[ModelRunner] Failed to wake EPLB process: {e}",
|
||||
exc_info=True)
|
||||
|
||||
def wakeup_eplb_worker(self):
|
||||
self.eplb_process.planner_q.put(1)
|
||||
|
||||
def forward_before(self):
|
||||
if self.update_expert_weight_flag():
|
||||
(expert_send_info, expert_recv_info, updated_expert_map,
|
||||
log2phy_map, layer_id) = self.update_info_all.pop(0)
|
||||
log2phy_map_this_rank = torch.from_numpy(numpy.array(log2phy_map))
|
||||
self.eplb_loader.set_log2phy_map(log2phy_map_this_rank)
|
||||
updated_expert_map_this_rank = torch.from_numpy(
|
||||
numpy.array(updated_expert_map))
|
||||
self.eplb_loader.generate_expert_d2d_transfer_task(
|
||||
expert_send_info, expert_recv_info,
|
||||
updated_expert_map_this_rank,
|
||||
layer_id + self.adaptor.num_dense_layers)
|
||||
|
||||
# set asynchronous stream for d2d expert weight update
|
||||
self.reqs = []
|
||||
self.eplb_loader.asyn_expert_weight_transfer(self.reqs)
|
||||
|
||||
def take_update_info_from_eplb_process(self):
|
||||
# Batch after eplb process being triggered, get update info provided by eplb process
|
||||
if self.get_update_info_flag():
|
||||
self.update_info_all = self.eplb_process.block_update_q.get()
|
||||
|
||||
def forward_end(self):
|
||||
if self.wakeup_eplb_worker_flag():
|
||||
self.compute_and_set_moe_load(is_clear=True)
|
||||
self.wakeup_eplb_worker()
|
||||
|
||||
if self.update_expert_weight_flag(
|
||||
) and self.expert_map_record_path is None:
|
||||
self.eplb_loader.update_expert_map_and_weight(self.reqs)
|
||||
|
||||
self.update_iteration()
|
||||
|
||||
def compute_and_set_moe_load(self, is_clear=False):
|
||||
local_load = self.adaptor.get_rank_expert_workload()
|
||||
|
||||
self._gather_buffer = None
|
||||
if dist.is_initialized():
|
||||
self.world_size = dist.get_world_size()
|
||||
self.device = local_load.device
|
||||
if self._gather_buffer is None:
|
||||
shape = (self.world_size, *local_load.shape)
|
||||
self._gather_buffer = torch.empty(shape,
|
||||
dtype=local_load.dtype,
|
||||
device=self.device)
|
||||
|
||||
dist.all_gather_into_tensor(self._gather_buffer, local_load)
|
||||
|
||||
moe_load = self._gather_buffer.permute(1, 0, 2)
|
||||
self.shared_dict["moe_load"] = moe_load.cpu()
|
||||
logger.debug(
|
||||
f"[ModelRunner] Updated shared_dict['moe_load'] shape={moe_load.shape}"
|
||||
)
|
||||
else:
|
||||
moe_load = local_load.unsqueeze(1)
|
||||
self.shared_dict["moe_load"] = moe_load.cpu()
|
||||
logger.debug(
|
||||
f"[ModelRunner] Updated shared_dict['moe_load'] shape={moe_load.shape}"
|
||||
)
|
||||
return moe_load
|
||||
|
||||
def warm_up_eplb(self):
|
||||
|
||||
self.get_init_expert_map()
|
||||
self.compute_and_set_moe_load()
|
||||
|
||||
src_tensor = torch.empty((1, ), device=self.device)
|
||||
self_rank = dist.get_rank()
|
||||
|
||||
comm_op_list = []
|
||||
|
||||
for dst_rank in range(self.world_size):
|
||||
if dst_rank == self_rank:
|
||||
continue
|
||||
comm_op_list.append(dist.P2POp(dist.isend, src_tensor, dst_rank))
|
||||
|
||||
for src_rank in range(self.world_size):
|
||||
if src_rank == self_rank:
|
||||
continue
|
||||
comm_op_list.append(dist.P2POp(dist.irecv, src_tensor, src_rank))
|
||||
if comm_op_list:
|
||||
reqs = dist.batch_isend_irecv(comm_op_list)
|
||||
|
||||
for req in reqs:
|
||||
req.wait()
|
||||
|
||||
def shutdown(self):
|
||||
"""
|
||||
Clean up the EPLB process.
|
||||
"""
|
||||
if self.process.is_alive():
|
||||
self.process.terminate()
|
||||
self.process.join()
|
||||
logger.info("[ModelRunner] EPLB process terminated")
|
||||
77
vllm_npu/eplb/utils.py
Normal file
77
vllm_npu/eplb/utils.py
Normal file
@@ -0,0 +1,77 @@
|
||||
#
|
||||
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# This file is a part of the vllm-ascend project.
|
||||
#
|
||||
# Todo: Once https://github.com/vllm-project/vllm/pull/23553 is merged in vllm. Remove this model register.
|
||||
import types
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def get_expert_map(self, layer_id):
|
||||
return self.model.layers[layer_id].mlp.experts.get_map()
|
||||
|
||||
|
||||
def get_log2phy_map(self, layer_id):
|
||||
return self.model.layers[layer_id].mlp.experts.get_log2phy_map()
|
||||
|
||||
|
||||
def get_all_expert_map(self, num_moe_layers):
|
||||
all_loads = []
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
for layer_id in range(num_moe_layers):
|
||||
load_tensor = self.get_expert_map(
|
||||
layer_id + num_dense_layers) # (num_experts_per_layer,)
|
||||
all_loads.append(load_tensor)
|
||||
|
||||
return torch.stack(all_loads, dim=0)
|
||||
|
||||
|
||||
def get_all_moe_loads(self):
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
all_moe_loads = torch.stack(
|
||||
[self.model.layers[layer_id + num_dense_layers].mlp.experts.moe_load \
|
||||
for layer_id in range(self.num_moe_layers)],
|
||||
dim=0
|
||||
)
|
||||
return all_moe_loads
|
||||
|
||||
|
||||
def clear_all_moe_loads(self):
|
||||
num_dense_layers = self.num_dense_layers if hasattr(
|
||||
self, "num_dense_layers") else 0
|
||||
for layer_id in range(self.num_moe_layers):
|
||||
self.model.layers[layer_id +
|
||||
num_dense_layers].mlp.experts.clear_moe_load()
|
||||
|
||||
|
||||
def model_register(model, model_config):
|
||||
model.get_expert_map = types.MethodType(get_expert_map, model)
|
||||
model.get_log2phy_map = types.MethodType(get_log2phy_map, model)
|
||||
model.get_all_expert_map = types.MethodType(get_all_expert_map, model)
|
||||
model.get_all_moe_loads = types.MethodType(get_all_moe_loads, model)
|
||||
model.clear_all_moe_loads = types.MethodType(clear_all_moe_loads, model)
|
||||
|
||||
config = model_config.hf_config
|
||||
|
||||
if config.model_type == "qwen3_moe":
|
||||
model.num_moe_layers = config.num_hidden_layers
|
||||
elif config.model_type == "deepseek_v2" or config.model_type == "deepseek_v3":
|
||||
model.num_dense_layers = config.first_k_dense_replace
|
||||
model.num_moe_layers = config.num_hidden_layers - model.num_dense_layers
|
||||
else:
|
||||
raise NotImplementedError("EPLB is not supported.")
|
||||
Reference in New Issue
Block a user