Files
handsomezhuzhu.github.io/otherdocs/概统/05-多维随机变量及其分布.md
2026-01-03 16:26:46 +08:00

193 lines
6.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 五、多维随机变量及其分布
## 1. 二维分布函数
**定义**$F(x,y) = P\{X \leq x, Y \leq y\}$
**四条基本性质**
1. **单调不减性**F(x,y)是变量x和y的不减函数
- 对于任意固定的y当$x_2 > x_1$时,$F(x_2,y) \geq F(x_1,y)$
- 对于任意固定的x当$y_2 > y_1$时,$F(x,y_2) \geq F(x,y_1)$
2. **有界性**$0 \leq F(x,y) \leq 1$,且
- $F(-\infty, y) = F(x, -\infty) = 0$
- $F(-\infty, -\infty) = 0$$F(+\infty, +\infty) = 1$
3. **右连续性**$F(x+0, y) = F(x, y)$$F(x, y+0) = F(x, y)$
4. **非负性**:对于任意$(x_1, y_1), (x_2, y_2)$$x_1 < x_2$, $y_1 < y_2$
$$F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \geq 0$$
---
## 2. 联合分布
### 离散型:联合分布律
$$p_{ij} = P\{X = x_i, Y = y_j\}, \quad i,j = 1,2,...$$
**性质**
- 非负性$p_{ij} \geq 0$
- 规范性$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} p_{ij} = 1$
### 连续型:联合概率密度
$f(x,y)$$(x,y) \in \mathbb{R}^2$
**性质**
- 非负性$f(x,y) \geq 0$
- 规范性$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(x,y)dxdy = F(\infty, \infty) = 1$
- $f(x,y)$在点$(x,y)$连续则有$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$
**区域概率**$(X,Y)$落在平面区域$G$内的概率
$$P\{(X,Y) \in G\} = \iint_G f(x,y)dxdy$$
---
## 3. 边缘分布
**边缘分布函数**
- $F_X(x) = F(x, \infty)$
- $F_Y(y) = F(\infty, y)$
### 离散型边缘分布律
$$p_{i\cdot} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1,2,...$$
$$p_{\cdot j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1,2,...$$
### 连续型边缘概率密度
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx$$
---
## 3.1 二维均匀分布
**定义**$(X,Y)$在区域$D$上均匀分布
$$f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D \\ 0, & \text{其他} \end{cases}$$
其中$S_D$为区域D的面积
**结论1**$P\{(X,Y) \in G\} = \frac{S_G}{S_D}$(面积之比)
**结论2**$D=\{(x,y)\mid a \le x \le b, c \le y \le d\}$
$X \sim U(a,b)$$Y \sim U(c,d)$且X与Y相互独立
**结论3**XY的边缘分布不一定是均匀分布
---
## 4. 条件分布与条件密度
### 离散型
$Y = y_j$条件下X的条件分布律
$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\cdot j}}$$
$X = x_i$条件下Y的条件分布律
$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i\cdot}}$$
### 连续型
$Y = y$条件下X的条件概率密度
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
$Y = y$条件下X的条件分布函数
$$F_{X|Y}(x|y) = P\{X \leq x | Y = y\} = \int_{-\infty}^{x} \frac{f(x,y)}{f_Y(y)}dx$$
---
## 5. 相互独立的随机变量
**定义**$F(x,y)$$F_X(x), F_Y(y)$分别是二维随机变量$(X,Y)$的分布函数及边缘分布函数若对于所有$x,y$
$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\}$$
$$F(x,y) = F_X(x)F_Y(y)$$
则称随机变量X和Y是**相互独立**
**独立性判定**
- **连续型**X和Y相互独立 $\Leftrightarrow$ $f(x,y) = f_X(x)f_Y(y)$ 在平面上几乎处处成立
- **离散型**X和Y相互独立 $\Leftrightarrow$ 对于所有可能取值$(x_i, y_j)$ $P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}$
---
## 6. 二维正态分布(重点性质)
$(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$
1. $X \sim N(\mu_1,\sigma_1^2)$$Y \sim N(\mu_2,\sigma_2^2)$
2. $X$$Y$相互独立 $\Leftrightarrow \rho=0$
3. 任意非零线性组合$aX+bY$仍服从正态分布
---
## 7. 两个随机变量函数的分布
### (1) Z = X + Y 的分布(卷积公式)
$(X,Y)$是二维连续型随机变量具有概率密度$f(x,y)$$Z = X + Y$的概率密度为
$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(z-y, y)dy = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有**卷积公式**
$$f_{X+Y}(z) = f_X * f_Y = \int_{-\infty}^{+\infty} f_X(z-y)f_Y(y)dy = \int_{-\infty}^{+\infty} f_X(x)f_Y(z-x)dx$$
### (2) Z = Y/X 的分布、Z = XY 的分布
$(X,Y)$是二维连续型随机变量概率密度为$f(x,y)$
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f(x, xz)dx$$
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$
若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx$$
### (3) M = max{X,Y} 及 N = min{X,Y} 的分布
设X,Y是两个相互独立的随机变量分布函数分别为$F_X(x), F_Y(y)$
**最大值的分布**
$$F_{\max}(z) = P\{M \leq z\} = P\{X \leq z, Y \leq z\} = F_X(z)F_Y(z)$$
**最小值的分布**
$$F_{\min}(z) = P\{N \leq z\} = 1 - P\{N > z\} = 1 - P\{X > z, Y > z\}$$
$$= 1 - [1-F_X(z)][1-F_Y(z)]$$
**推广**:若$X_1, X_2, ..., X_n$独立同分布,分布函数为$F(x)$,则
- $F_{\max}(z) = [F(z)]^n$
- $F_{\min}(z) = 1 - [1-F(z)]^n$
---
## 8. 多维随机变量典型例题
**例**:设随机变量(X,Y)的概率密度为
$$f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$$
(1) 问X和Y是否相互独立(2) 求Z = X + Y的概率密度。
**解**
(1) (X,Y)关于X的边缘概率密度为
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \begin{cases} \int_0^{+\infty} \frac{1}{2}(x+y)e^{-(x+y)}dy, & x > 0 \\ 0, & x \leq 0 \end{cases} = \begin{cases} \frac{1}{2}(x+1)e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$$
同理,$f_Y(y) = \begin{cases} \frac{1}{2}(y+1)e^{-y}, & y > 0 \\ 0, & y \leq 0 \end{cases}$
而 $f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{4}(x+1)(y+1)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$
显然 $f_X(x) \cdot f_Y(y) \neq f(x,y)$故X和Y**不独立**。
(2) Z = X + Y的概率密度为
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
只有当$x > 0$且$z - x > 0$,即$0 < x < z$被积函数不为零
$z \leq 0$$f_Z(z) = 0$
$z > 0$时,
$$f_Z(z) = \int_0^z \frac{1}{2}(x + z - x) \cdot e^{-(x+z-x)}dx = \int_0^z \frac{1}{2}ze^{-z}dx = \frac{1}{2}z^2e^{-z}$$
所以 $f_Z(z) = \begin{cases} \frac{1}{2}z^2e^{-z}, & z > 0 \\ 0, & z \leq 0 \end{cases}$