mirror of
https://github.com/handsomezhuzhu/handsomezhuzhu.github.io.git
synced 2026-02-20 20:00:14 +00:00
193 lines
6.3 KiB
Markdown
193 lines
6.3 KiB
Markdown
# 五、多维随机变量及其分布
|
||
|
||
## 1. 二维分布函数
|
||
|
||
**定义**:$F(x,y) = P\{X \leq x, Y \leq y\}$
|
||
|
||
**四条基本性质**:
|
||
|
||
1. **单调不减性**:F(x,y)是变量x和y的不减函数
|
||
- 对于任意固定的y,当$x_2 > x_1$时,$F(x_2,y) \geq F(x_1,y)$
|
||
- 对于任意固定的x,当$y_2 > y_1$时,$F(x,y_2) \geq F(x,y_1)$
|
||
|
||
2. **有界性**:$0 \leq F(x,y) \leq 1$,且
|
||
- $F(-\infty, y) = F(x, -\infty) = 0$
|
||
- $F(-\infty, -\infty) = 0$,$F(+\infty, +\infty) = 1$
|
||
|
||
3. **右连续性**:$F(x+0, y) = F(x, y)$,$F(x, y+0) = F(x, y)$
|
||
|
||
4. **非负性**:对于任意$(x_1, y_1), (x_2, y_2)$,$x_1 < x_2$, $y_1 < y_2$,有
|
||
$$F(x_2, y_2) - F(x_2, y_1) + F(x_1, y_1) - F(x_1, y_2) \geq 0$$
|
||
|
||
---
|
||
|
||
## 2. 联合分布
|
||
|
||
### 离散型:联合分布律
|
||
$$p_{ij} = P\{X = x_i, Y = y_j\}, \quad i,j = 1,2,...$$
|
||
|
||
**性质**:
|
||
- 非负性:$p_{ij} \geq 0$
|
||
- 规范性:$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty} p_{ij} = 1$
|
||
|
||
### 连续型:联合概率密度
|
||
$f(x,y)$,$(x,y) \in \mathbb{R}^2$
|
||
|
||
**性质**:
|
||
- 非负性:$f(x,y) \geq 0$
|
||
- 规范性:$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} f(x,y)dxdy = F(\infty, \infty) = 1$
|
||
- 若$f(x,y)$在点$(x,y)$连续,则有$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$
|
||
|
||
**区域概率**:点$(X,Y)$落在平面区域$G$内的概率
|
||
$$P\{(X,Y) \in G\} = \iint_G f(x,y)dxdy$$
|
||
|
||
---
|
||
|
||
## 3. 边缘分布
|
||
|
||
**边缘分布函数**:
|
||
- $F_X(x) = F(x, \infty)$
|
||
- $F_Y(y) = F(\infty, y)$
|
||
|
||
### 离散型边缘分布律
|
||
|
||
$$p_{i\cdot} = \sum_{j=1}^{\infty} p_{ij} = P\{X = x_i\}, \quad i = 1,2,...$$
|
||
|
||
$$p_{\cdot j} = \sum_{i=1}^{\infty} p_{ij} = P\{Y = y_j\}, \quad j = 1,2,...$$
|
||
|
||
### 连续型边缘概率密度
|
||
|
||
$$f_X(x) = \int_{-\infty}^{\infty} f(x,y)dy$$
|
||
|
||
$$f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx$$
|
||
|
||
---
|
||
|
||
## 3.1 二维均匀分布
|
||
|
||
**定义**:若$(X,Y)$在区域$D$上均匀分布,则
|
||
$$f(x,y) = \begin{cases} \frac{1}{S_D}, & (x,y) \in D \\ 0, & \text{其他} \end{cases}$$
|
||
其中$S_D$为区域D的面积。
|
||
|
||
**结论1**:$P\{(X,Y) \in G\} = \frac{S_G}{S_D}$(面积之比)
|
||
|
||
**结论2**:若$D=\{(x,y)\mid a \le x \le b, c \le y \le d\}$,则
|
||
$X \sim U(a,b)$,$Y \sim U(c,d)$,且X与Y相互独立。
|
||
|
||
**结论3**:X、Y的边缘分布不一定是均匀分布。
|
||
|
||
---
|
||
|
||
## 4. 条件分布与条件密度
|
||
|
||
### 离散型
|
||
|
||
在$Y = y_j$条件下X的条件分布律:
|
||
$$P\{X = x_i | Y = y_j\} = \frac{P\{X = x_i, Y = y_j\}}{P\{Y = y_j\}} = \frac{p_{ij}}{p_{\cdot j}}$$
|
||
|
||
在$X = x_i$条件下Y的条件分布律:
|
||
$$P\{Y = y_j | X = x_i\} = \frac{P\{X = x_i, Y = y_j\}}{P\{X = x_i\}} = \frac{p_{ij}}{p_{i\cdot}}$$
|
||
|
||
### 连续型
|
||
|
||
在$Y = y$条件下X的条件概率密度:
|
||
$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$
|
||
|
||
在$Y = y$条件下X的条件分布函数:
|
||
$$F_{X|Y}(x|y) = P\{X \leq x | Y = y\} = \int_{-\infty}^{x} \frac{f(x,y)}{f_Y(y)}dx$$
|
||
|
||
---
|
||
|
||
## 5. 相互独立的随机变量
|
||
|
||
**定义**:设$F(x,y)$及$F_X(x), F_Y(y)$分别是二维随机变量$(X,Y)$的分布函数及边缘分布函数,若对于所有$x,y$有
|
||
$$P\{X \leq x, Y \leq y\} = P\{X \leq x\}P\{Y \leq y\}$$
|
||
即
|
||
$$F(x,y) = F_X(x)F_Y(y)$$
|
||
则称随机变量X和Y是**相互独立**的。
|
||
|
||
**独立性判定**:
|
||
- **连续型**:X和Y相互独立 $\Leftrightarrow$ $f(x,y) = f_X(x)f_Y(y)$ 在平面上几乎处处成立
|
||
- **离散型**:X和Y相互独立 $\Leftrightarrow$ 对于所有可能取值$(x_i, y_j)$有 $P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}$
|
||
|
||
---
|
||
|
||
## 6. 二维正态分布(重点性质)
|
||
|
||
设$(X,Y) \sim N(\mu_1,\mu_2;\sigma_1^2,\sigma_2^2;\rho)$,则
|
||
1. $X \sim N(\mu_1,\sigma_1^2)$,$Y \sim N(\mu_2,\sigma_2^2)$
|
||
2. $X$与$Y$相互独立 $\Leftrightarrow \rho=0$
|
||
3. 任意非零线性组合$aX+bY$仍服从正态分布
|
||
|
||
---
|
||
|
||
## 7. 两个随机变量函数的分布
|
||
|
||
### (1) Z = X + Y 的分布(卷积公式)
|
||
|
||
设$(X,Y)$是二维连续型随机变量,具有概率密度$f(x,y)$,则$Z = X + Y$的概率密度为
|
||
$$f_{X+Y}(z) = \int_{-\infty}^{+\infty} f(z-y, y)dy = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
|
||
|
||
若X和Y相互独立,边缘概率密度为$f_X(x), f_Y(y)$,则有**卷积公式**:
|
||
$$f_{X+Y}(z) = f_X * f_Y = \int_{-\infty}^{+\infty} f_X(z-y)f_Y(y)dy = \int_{-\infty}^{+\infty} f_X(x)f_Y(z-x)dx$$
|
||
|
||
### (2) Z = Y/X 的分布、Z = XY 的分布
|
||
|
||
设$(X,Y)$是二维连续型随机变量,概率密度为$f(x,y)$
|
||
|
||
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f(x, xz)dx$$
|
||
|
||
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$
|
||
|
||
若X和Y相互独立,边缘概率密度为$f_X(x), f_Y(y)$,则有:
|
||
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
|
||
|
||
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx$$
|
||
|
||
### (3) M = max{X,Y} 及 N = min{X,Y} 的分布
|
||
|
||
设X,Y是两个相互独立的随机变量,分布函数分别为$F_X(x), F_Y(y)$
|
||
|
||
**最大值的分布**:
|
||
$$F_{\max}(z) = P\{M \leq z\} = P\{X \leq z, Y \leq z\} = F_X(z)F_Y(z)$$
|
||
|
||
**最小值的分布**:
|
||
$$F_{\min}(z) = P\{N \leq z\} = 1 - P\{N > z\} = 1 - P\{X > z, Y > z\}$$
|
||
$$= 1 - [1-F_X(z)][1-F_Y(z)]$$
|
||
|
||
**推广**:若$X_1, X_2, ..., X_n$独立同分布,分布函数为$F(x)$,则
|
||
- $F_{\max}(z) = [F(z)]^n$
|
||
- $F_{\min}(z) = 1 - [1-F(z)]^n$
|
||
|
||
---
|
||
|
||
## 8. 多维随机变量典型例题
|
||
|
||
**例**:设随机变量(X,Y)的概率密度为
|
||
$$f(x,y) = \begin{cases} \frac{1}{2}(x+y)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$$
|
||
|
||
(1) 问:X和Y是否相互独立?(2) 求Z = X + Y的概率密度。
|
||
|
||
**解**:
|
||
|
||
(1) (X,Y)关于X的边缘概率密度为
|
||
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y)dy = \begin{cases} \int_0^{+\infty} \frac{1}{2}(x+y)e^{-(x+y)}dy, & x > 0 \\ 0, & x \leq 0 \end{cases} = \begin{cases} \frac{1}{2}(x+1)e^{-x}, & x > 0 \\ 0, & x \leq 0 \end{cases}$$
|
||
|
||
同理,$f_Y(y) = \begin{cases} \frac{1}{2}(y+1)e^{-y}, & y > 0 \\ 0, & y \leq 0 \end{cases}$
|
||
|
||
而 $f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{4}(x+1)(y+1)e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$
|
||
|
||
显然 $f_X(x) \cdot f_Y(y) \neq f(x,y)$,故X和Y**不独立**。
|
||
|
||
(2) Z = X + Y的概率密度为
|
||
$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z-x)dx$$
|
||
|
||
只有当$x > 0$且$z - x > 0$,即$0 < x < z$时,被积函数不为零。
|
||
|
||
当$z \leq 0$时,$f_Z(z) = 0$
|
||
|
||
当$z > 0$时,
|
||
$$f_Z(z) = \int_0^z \frac{1}{2}(x + z - x) \cdot e^{-(x+z-x)}dx = \int_0^z \frac{1}{2}ze^{-z}dx = \frac{1}{2}z^2e^{-z}$$
|
||
|
||
所以 $f_Z(z) = \begin{cases} \frac{1}{2}z^2e^{-z}, & z > 0 \\ 0, & z \leq 0 \end{cases}$
|