mirror of
https://github.com/handsomezhuzhu/handsomezhuzhu.github.io.git
synced 2026-02-20 11:50:14 +00:00
公式修正
This commit is contained in:
@@ -578,7 +578,7 @@ $$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$
|
|||||||
若X和Y相互独立,边缘概率密度为$f_X(x), f_Y(y)$,则有:
|
若X和Y相互独立,边缘概率密度为$f_X(x), f_Y(y)$,则有:
|
||||||
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
|
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
|
||||||
|
|
||||||
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|f_X(x)f_Y(\frac{z}{x})dx$$
|
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y\left(\frac{z}{x}\right)dx$$
|
||||||
|
|
||||||
#### (3) M = max{X,Y} 及 N = min{X,Y} 的分布
|
#### (3) M = max{X,Y} 及 N = min{X,Y} 的分布
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user