公式修正

This commit is contained in:
2026-01-05 19:09:43 +08:00
parent 068dd157e5
commit d3f7d656b0

View File

@@ -578,7 +578,7 @@ $$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$
若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有 若X和Y相互独立边缘概率密度为$f_X(x), f_Y(y)$则有
$$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$ $$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$
$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|f_X(x)f_Y(\frac{z}{x})dx$$ $$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y\left(\frac{z}{x}\right)dx$$
#### (3) M = max{X,Y} 及 N = min{X,Y} 的分布 #### (3) M = max{X,Y} 及 N = min{X,Y} 的分布