diff --git a/docs/sop/notes/probability-statistics-notes.md b/docs/sop/notes/probability-statistics-notes.md index 7304920..c1ffa17 100644 --- a/docs/sop/notes/probability-statistics-notes.md +++ b/docs/sop/notes/probability-statistics-notes.md @@ -578,7 +578,7 @@ $$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f(x, \frac{z}{x})dx$$ 若X和Y相互独立,边缘概率密度为$f_X(x), f_Y(y)$,则有: $$f_{Y/X}(z) = \int_{-\infty}^{\infty} |x|f_X(x)f_Y(xz)dx$$ -$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|f_X(x)f_Y(\frac{z}{x})dx$$ +$$f_{XY}(z) = \int_{-\infty}^{\infty} \frac{1}{|x|}f_X(x)f_Y\left(\frac{z}{x}\right)dx$$ #### (3) M = max{X,Y} 及 N = min{X,Y} 的分布