mirror of
https://github.com/handsomezhuzhu/QQuiz.git
synced 2026-02-20 20:10:14 +00:00
feat: 实现数据库驱动的API配置管理和项目结构重组
## 新功能 - 实现管理后台API配置管理(OpenAI/Anthropic/Qwen) - API配置保存到数据库,实时生效无需重启 - API密钥遮罩显示(前10位+后4位) - 完整endpoint URL自动显示 ## 后端改进 - 新增 config_service.py 用于加载数据库配置 - LLMService 支持动态配置注入,回退到环境变量 - 更新 exam.py 和 question.py 使用数据库配置 - 扩展 schemas.py 支持所有API配置字段 ## 前端改进 - 重写 AdminSettings.jsx 增强UI体验 - API密钥显示/隐藏切换 - 当前使用的提供商可视化标识 - 移除"需要重启"的误导性提示 ## 项目结构重组 - 移动所有脚本到 scripts/ 目录 - 移动所有文档到 docs/ 目录 - 清理 Python 缓存文件 🤖 Generated with Claude Code Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
@@ -24,11 +24,26 @@ async def get_system_config(
|
||||
result = await db.execute(select(SystemConfig))
|
||||
configs = {config.key: config.value for config in result.scalars().all()}
|
||||
|
||||
# Mask API keys (show only first 10 and last 4 characters)
|
||||
def mask_api_key(key):
|
||||
if not key or len(key) < 20:
|
||||
return key
|
||||
return f"{key[:10]}...{key[-4:]}"
|
||||
|
||||
return {
|
||||
"allow_registration": configs.get("allow_registration", "true").lower() == "true",
|
||||
"max_upload_size_mb": int(configs.get("max_upload_size_mb", "10")),
|
||||
"max_daily_uploads": int(configs.get("max_daily_uploads", "20")),
|
||||
"ai_provider": configs.get("ai_provider", "openai")
|
||||
"ai_provider": configs.get("ai_provider", "openai"),
|
||||
# API Configuration
|
||||
"openai_api_key": mask_api_key(configs.get("openai_api_key")),
|
||||
"openai_base_url": configs.get("openai_base_url", "https://api.openai.com/v1"),
|
||||
"openai_model": configs.get("openai_model", "gpt-4o-mini"),
|
||||
"anthropic_api_key": mask_api_key(configs.get("anthropic_api_key")),
|
||||
"anthropic_model": configs.get("anthropic_model", "claude-3-haiku-20240307"),
|
||||
"qwen_api_key": mask_api_key(configs.get("qwen_api_key")),
|
||||
"qwen_base_url": configs.get("qwen_base_url", "https://dashscope.aliyuncs.com/compatible-mode/v1"),
|
||||
"qwen_model": configs.get("qwen_model", "qwen-plus")
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -83,9 +83,12 @@ async def login(
|
||||
|
||||
# Create access token
|
||||
access_token = create_access_token(
|
||||
data={"sub": user.id}
|
||||
data={"sub": str(user.id)} # JWT 'sub' must be a string
|
||||
)
|
||||
|
||||
print(f"✅ Login successful: user={user.username}, id={user.id}")
|
||||
print(f"🔑 Generated token (first 50 chars): {access_token[:50]}...")
|
||||
|
||||
return {
|
||||
"access_token": access_token,
|
||||
"token_type": "bearer"
|
||||
|
||||
@@ -17,7 +17,8 @@ from schemas import (
|
||||
)
|
||||
from services.auth_service import get_current_user
|
||||
from services.document_parser import document_parser
|
||||
from services.llm_service import llm_service
|
||||
from services.llm_service import LLMService
|
||||
from services.config_service import load_llm_config
|
||||
from utils import is_allowed_file, calculate_content_hash
|
||||
|
||||
router = APIRouter()
|
||||
@@ -151,6 +152,10 @@ async def async_parse_and_save(
|
||||
if not text_content or len(text_content.strip()) < 10:
|
||||
raise Exception("Document appears to be empty or too short")
|
||||
|
||||
# Load LLM configuration from database
|
||||
llm_config = await load_llm_config(db)
|
||||
llm_service = LLMService(config=llm_config)
|
||||
|
||||
# Parse questions using LLM
|
||||
print(f"[Exam {exam_id}] Calling LLM to extract questions...")
|
||||
questions_data = await llm_service.parse_document(text_content)
|
||||
|
||||
@@ -13,7 +13,8 @@ from schemas import (
|
||||
AnswerSubmit, AnswerCheckResponse
|
||||
)
|
||||
from services.auth_service import get_current_user
|
||||
from services.llm_service import llm_service
|
||||
from services.llm_service import LLMService
|
||||
from services.config_service import load_llm_config
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
@@ -177,6 +178,10 @@ async def check_answer(
|
||||
|
||||
# Check answer based on question type
|
||||
if question.type == QuestionType.SHORT:
|
||||
# Load LLM configuration from database
|
||||
llm_config = await load_llm_config(db)
|
||||
llm_service = LLMService(config=llm_config)
|
||||
|
||||
# Use AI to grade short answer
|
||||
grading = await llm_service.grade_short_answer(
|
||||
question.content,
|
||||
|
||||
Reference in New Issue
Block a user