mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
214 lines
7.7 KiB
Python
214 lines
7.7 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
|
|
from typing import Optional, Tuple, Union, cast
|
|
|
|
import torch
|
|
from vllm.config import get_current_vllm_config
|
|
from vllm.forward_context import get_forward_context
|
|
from vllm.model_executor.layers.layernorm import GemmaRMSNorm, RMSNorm
|
|
|
|
|
|
def _addrmsnorm_forward_oot(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: torch.Tensor,
|
|
layer: Optional[torch.nn.Module] = None,
|
|
bias: Optional[torch.nn.Parameter] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
import torch_npu
|
|
|
|
from vllm_npu.utils import is_310p
|
|
|
|
if layer is not None and not is_310p():
|
|
layer_cls_name = layer.__class__.__name__
|
|
try:
|
|
weight_prefetch_method = get_forward_context(
|
|
).weight_prefetch_method
|
|
except AssertionError:
|
|
weight_prefetch_method = None
|
|
|
|
# prefetch qkvo_proj.weight preprocess
|
|
if weight_prefetch_method:
|
|
weight_prefetch_method.maybe_prefetch_attn_weight_preprocess(
|
|
layer_cls_name=layer_cls_name,
|
|
weight=layer.weight,
|
|
start_flag=x,
|
|
)
|
|
# add_rms_norm_quant
|
|
x, _, residual = torch_npu.npu_add_rms_norm_quant(
|
|
x,
|
|
residual,
|
|
self.weight,
|
|
layer.aclnn_input_scale,
|
|
layer.aclnn_input_offset,
|
|
beta=bias,
|
|
epsilon=self.variance_epsilon)
|
|
|
|
# prefetch qkvo_proj.weight postprocess
|
|
if weight_prefetch_method:
|
|
weight_prefetch_method.maybe_prefetch_attn_weight_postprocess(
|
|
layer_cls_name=layer_cls_name,
|
|
stop_flag=x,
|
|
)
|
|
|
|
else:
|
|
if is_310p():
|
|
orig_dtype = residual.dtype
|
|
x = x + residual.to(x.dtype)
|
|
residual = x.to(orig_dtype)
|
|
x, _ = torch_npu.npu_rms_norm(x, self.weight,
|
|
self.variance_epsilon)
|
|
else:
|
|
x, _, residual = torch_npu.npu_add_rms_norm(
|
|
x, residual, self.weight, self.variance_epsilon)
|
|
if bias is not None:
|
|
x.add_(bias)
|
|
torch.ops.vllm.maybe_wait_prefetch_done(x)
|
|
return x, residual
|
|
|
|
|
|
class AscendRMSNorm(RMSNorm):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-6,
|
|
var_hidden_size: Optional[int] = None,
|
|
has_weight: bool = True,
|
|
dtype: Optional[torch.dtype] = None,
|
|
) -> None:
|
|
super().__init__(hidden_size, eps, var_hidden_size, has_weight, dtype)
|
|
vllm_config = get_current_vllm_config()
|
|
self.bias = None
|
|
# quantization with anti_method m4 will generate none-zero norm bias
|
|
if vllm_config.quant_config is not None and \
|
|
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
|
|
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
|
|
requires_grad=False)
|
|
|
|
def forward_oot(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
import torch_npu
|
|
|
|
if residual is not None:
|
|
assert x.size(0) == residual.size(0)
|
|
x, residual = _addrmsnorm_forward_oot(
|
|
self, x, residual, self.next_need_quant_fusion_linear,
|
|
self.bias)
|
|
return x, residual
|
|
x, residual = torch_npu.npu_rms_norm(x, self.weight,
|
|
self.variance_epsilon)
|
|
if self.bias is not None:
|
|
x.add_(self.bias)
|
|
return x
|
|
|
|
@property
|
|
def next_need_quant_fusion_linear(self):
|
|
try:
|
|
forward_context = get_forward_context()
|
|
if not forward_context.addrmsnorm_quant_fusion_enabled or \
|
|
forward_context.layer_idx == forward_context.num_hidden_layers:
|
|
return None
|
|
except AssertionError:
|
|
return None
|
|
|
|
next_linear = None
|
|
model_instance = forward_context.model_instance
|
|
layer_idx = forward_context.layer_idx
|
|
fusion_linear = forward_context.fusion_linear
|
|
next_linear = None
|
|
if fusion_linear == "qkv_dense":
|
|
next_linear = model_instance.model.layers[
|
|
layer_idx].self_attn.qkv_proj
|
|
forward_context.fusion_linear = "gate_up_dense"
|
|
elif fusion_linear == "gate_up_dense":
|
|
next_linear = model_instance.model.layers[
|
|
layer_idx].mlp.gate_up_proj
|
|
forward_context.fusion_linear = "qkv_dense"
|
|
# if prefetch_mlp_weight enabled, following accumulation operation
|
|
# does not need to be repeated
|
|
if not forward_context.prefetch_mlp_enabled:
|
|
forward_context.layer_idx += 1
|
|
elif fusion_linear == "qkv_moe":
|
|
next_linear = model_instance.model.layers[
|
|
layer_idx].self_attn.qkv_proj
|
|
forward_context.fusion_linear = "gate_moe"
|
|
elif fusion_linear == "gate_moe":
|
|
forward_context.fusion_linear = "qkv_moe"
|
|
forward_context.layer_idx += 1
|
|
from vllm_npu.quantization.w8a8 import AscendW8A8LinearMethod
|
|
if next_linear is not None and \
|
|
not isinstance(next_linear.quant_method.quant_method, AscendW8A8LinearMethod):
|
|
next_linear = None
|
|
return next_linear
|
|
|
|
|
|
class AscendQuantRMSNorm(AscendRMSNorm):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
eps: float = 1e-6,
|
|
var_hidden_size: Optional[int] = None,
|
|
has_weight: bool = True,
|
|
dtype: Optional[torch.dtype] = None,
|
|
) -> None:
|
|
super().__init__(hidden_size, eps, var_hidden_size, has_weight, dtype)
|
|
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
|
|
requires_grad=False)
|
|
|
|
def forward_oot(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
if residual is not None:
|
|
x, residual = super().forward_oot(x, residual)
|
|
return x.add_(self.bias), residual
|
|
return cast(torch.Tensor, super().forward_oot(x)).add_(self.bias)
|
|
|
|
|
|
class AscendGemmaRMSNorm(GemmaRMSNorm):
|
|
|
|
def forward_oot(
|
|
self,
|
|
x: torch.Tensor,
|
|
residual: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
|
import torch_npu
|
|
|
|
from vllm_npu.utils import is_310p
|
|
if residual is not None:
|
|
if is_310p():
|
|
orig_dtype = residual.dtype
|
|
x = x + residual.to(x.dtype)
|
|
residual = x.to(orig_dtype)
|
|
x, _ = torch_npu.npu_rms_norm(x, 1.0 + self.weight,
|
|
self.variance_epsilon)
|
|
else:
|
|
x, _, residual = torch_npu.npu_add_rms_norm(
|
|
x, residual, 1.0 + self.weight, self.variance_epsilon)
|
|
return x, residual
|
|
|
|
x, _ = torch_npu.npu_rms_norm(x, 1.0 + self.weight,
|
|
self.variance_epsilon)
|
|
return x
|