Files
vllm-npu-plugin/vllm_npu/ops/layernorm.py
handsomezhuzhu e75504df72 feat: initial vllm-npu-plugin for Ascend NPU adaptation
- NPUPlatform: device management, HCCL process group, config adaptation
- AscendAttentionBackend: npu_fusion_attention (prefill) + npu_incre_flash_attention (decode)
- NPUCommunicator: HCCL-based distributed communication
- NPUWorker: NPU device init, memory profiling
- Custom ops: SiluAndMul, RMS norm, rotary embedding
- Plugin registered via vllm.platform_plugins entry point

Based on vllm-ascend official pattern, targeting Ascend 910B
2026-02-10 11:06:01 +08:00

42 lines
967 B
Python

"""
NPU-optimized layer normalization for Ascend.
Provides RMS norm operations using ``torch_npu.npu_rms_norm`` and
``torch_npu.npu_add_rms_norm``.
"""
import torch
def rms_norm_npu(
out: torch.Tensor,
input: torch.Tensor,
weight: torch.Tensor,
epsilon: float,
) -> None:
"""RMS norm using Ascend NPU fused kernel.
Writes the result into ``out`` in-place.
"""
import torch_npu # noqa: F401
normed, _residual = torch_npu.npu_rms_norm(input, weight, epsilon)
out.copy_(normed)
def fused_add_rms_norm_npu(
input: torch.Tensor,
residual: torch.Tensor,
weight: torch.Tensor,
epsilon: float,
) -> None:
"""Fused add + RMS norm using Ascend NPU kernel.
Modifies ``input`` and ``residual`` in-place.
"""
import torch_npu # noqa: F401
normed, residual_out = torch_npu.npu_add_rms_norm(
input, residual, weight, epsilon
)
input.copy_(normed)
residual.copy_(residual_out)