Files
vllm-npu-plugin/vllm_npu/attention/sfa_v1.py
2026-02-10 23:08:39 +08:00

989 lines
42 KiB
Python

from dataclasses import dataclass
from typing import (TYPE_CHECKING, ClassVar, NamedTuple, Optional, Tuple, Type,
TypeVar)
import torch
import torch_npu
from torch import nn
from vllm.attention.backends.abstract import (AttentionBackend,
AttentionMetadata,
MLAAttentionImpl)
from vllm.config import VllmConfig, get_current_vllm_config
from vllm.distributed import get_tensor_model_parallel_world_size, get_tp_group
from vllm.model_executor.layers.linear import (LinearBase,
UnquantizedLinearMethod)
from vllm.utils import cdiv, round_down
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm_npu.ascend_config import get_ascend_config
from vllm_npu.attention.attention_v1 import AscendAttentionState
from vllm_npu.attention.mla_v1 import AscendMLAMetadata
from vllm_npu.attention.utils import (AscendCommonAttentionMetadata,
split_decodes_and_prefills)
from vllm_npu.multistream.base import MSAttentionMetadataSplitConfig
from vllm_npu.multistream.ms_split import model_input_split_v1_mla_attn
from vllm_npu.worker.npu_input_batch import InputBatch
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
class AscendSFABackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_name() -> str:
return "ASCEND_SFA"
@staticmethod
def get_metadata_cls() -> type["AttentionMetadata"]:
return AscendSFAMetadata
@staticmethod
def get_builder_cls():
return AscendSFAMetadataBuilder
@staticmethod
def get_kv_cache_shape(num_blocks: int, block_size: int, num_kv_heads: int,
head_size: int) -> tuple[int, ...]:
return (num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def get_impl_cls() -> Type["AscendSFAImpl"]:
return AscendSFAImpl
@dataclass
class AscendSFAPrefillMetadata:
""" Prefill Specific Metadata for Ascend"""
@dataclass
class ChunkedContextMetadata:
# New for MLA (compared to FlashAttention)
# For handling chunked prefill
cu_seq_lens: torch.Tensor
starts: torch.Tensor
seq_tot: list[int]
max_seq_lens: list[int]
workspace: torch.Tensor
chunk_seq_lens: torch.Tensor
attn_mask: torch.Tensor
query_lens: list[int]
seq_lens: list[int]
context_lens: torch.Tensor
input_positions: torch.Tensor
query_start_loc: torch.Tensor
block_table: torch.Tensor
max_query_len: int
max_seq_lens: int
sin: torch.Tensor
cos: torch.Tensor
chunked_context: Optional[ChunkedContextMetadata] = None
@dataclass
class AscendSFADecodeMetadata:
# Input positions for rotrary embeddings since for MLA the rotary
# position embeddings are applied inside the attention backend
input_positions: torch.Tensor
block_table: torch.Tensor
seq_lens: torch.Tensor
max_seq_lens: int
seq_lens_list: list[int]
actual_seq_lengths_q: torch.Tensor
sin: torch.Tensor
cos: torch.Tensor
attn_mask: Optional[torch.Tensor] = None
@dataclass
class AscendSFAMetadata:
"""Metadata for MLACommon.
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
# NOTE(sang): Definition of context_len, query_len, and seq_len.
# |---------- N-1 iteration --------|
# |---------------- N iteration ---------------------|
# |- tokenA -|......................|-- newTokens ---|
# |---------- context_len ----------|
# |-------------------- seq_len ---------------------|
# |-- query_len ---|
num_actual_tokens: int # Number of tokens excluding padding.
slot_mapping: torch.Tensor
query_start_loc: torch.Tensor
seq_lens: torch.Tensor
block_tables: torch.Tensor
# New for MLA (compared to FlashAttention)
# For handling prefill decode split
num_decodes: int
num_decode_tokens: int
num_prefills: int
# For logging.
num_input_tokens: int = 0 # Number of tokens including padding.
query_lens: Optional[list[int]] = None
# The dimension of the attention heads
head_dim: Optional[int] = None
attn_mask: torch.Tensor = None
# chunked prefill by default if no attn_states passed
attn_state: AscendAttentionState = AscendAttentionState.ChunkedPrefill
decode: Optional[AscendSFADecodeMetadata] = None
prefill: Optional[AscendSFAPrefillMetadata] = None
enable_dbo_across_dp: bool = False
def __post_init__(self):
pass
# supported_head_sizes = AscendMLABackend.get_supported_head_sizes()
# if self.head_dim is not None and self.head_dim \
# not in supported_head_sizes:
# raise ValueError(
# f"Only {supported_head_sizes} are supported for head_dim,",
# f"received {self.head_dim}.")
def split_metadata_for_multistream(
self,
ms_split_config: MSAttentionMetadataSplitConfig,
) -> list["AscendSFAMetadata"]:
"""Split metadata for multi-stream with AscendSFAMetadata"""
return model_input_split_v1_mla_attn(
ms_split_config=ms_split_config,
attn_metadata=self,
_metadata_cls=AscendMLAMetadata,
)
M = TypeVar("M", bound=AscendSFAMetadata)
class AscendSFAMetadataBuilder:
# Does this backend/builder support ACL Graphs for attention (default: no).
aclgraph_support: ClassVar[AttentionCGSupport] = \
AttentionCGSupport.NEVER
"""
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
# _attn_mask_builder = None
def __init__(self,
kv_cache_spec,
layer_names,
vllm_config: VllmConfig,
device: torch.device,
metadata_cls: Optional[AscendSFAMetadata] = None):
self.metadata_cls: Optional[AscendSFAMetadata] = metadata_cls \
if metadata_cls is not None else AscendSFAMetadata # type: ignore
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.device = device
scheduler_config = vllm_config.scheduler_config
self.block_size = vllm_config.cache_config.block_size
self.max_blocks = (vllm_config.model_config.max_model_len +
self.block_size - 1) // self.block_size
self.chunked_prefill_enabled = scheduler_config.chunked_prefill_enabled
self.speculative_config = vllm_config.speculative_config
self.decode_threshold = 1
if self.speculative_config:
spec_token_num = self.speculative_config.num_speculative_tokens
self.decode_threshold += spec_token_num
assert self.decode_threshold <= 16, f"decode_threshold exceeded \
npu_fused_infer_attention_score TND layout's limit of 16, \
got {self.decode_threshold}"
if self.chunked_prefill_enabled:
self.chunked_prefill_workspace_size = min(
# Max sure there is enough for 8 full length request or at least
# 4 pages of cache per request
max(8 * self.model_config.max_model_len,
4 * scheduler_config.max_num_seqs * self.block_size),
# For long-context models try not to over-allocate limiting
# kv-cache space, limiting it to 64k tokens,
# which would result in the workspace being:
# 2*(576)*(64*1024) = 144mb
# (assuming 576 MLA head dim, and fp16)
# which would result in up-projected context being
# 2*(192*128)*(64*1024) = 3gb
# (assuming 192 QK head dim, 128 heads, and fp16)
128 * 1024)
assert self.chunked_prefill_workspace_size >= \
scheduler_config.max_num_seqs * self.block_size
self.chunked_prefill_workspace = torch.empty(
(self.chunked_prefill_workspace_size,
self.model_config.get_head_size()),
dtype=self.model_config.dtype,
device=device,
)
self.rope_dim = self.model_config.hf_text_config.qk_rope_head_dim
self.cos_cache = None
self.sin_cache = None
def reorder_batch(self, input_batch: "InputBatch",
scheduler_output: "SchedulerOutput") -> bool:
# We now want to reorder the batch so that the "decode" requests are at
# the front and the "prefill" requests are at the using the least amount
# swaps possible. (NOTE for now we loosely use "decode" to mean requests
# where attention is likely memory-bound and "prefill" to mean requests
# where attention is likely compute-bound, TODO(lucas): figure out a
# better naming here)
decodes = []
prefills = []
for i, req_id in enumerate(input_batch.req_ids):
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
if num_tokens <= self.decode_threshold:
decodes.append(i)
else:
prefills.append(i)
# We hope that this is fairly minimal since decodes
# should be around for a number of iterations so hopefully they are
# relatively stationary (and new request are generally appended to the
# persistent batch so already should be at the back)
# To achieve this we loop over the decodes in descending order and
# the prefills in ascending order. We swap decodes from the "back"
# i.e. past where the last decode should be in the reodorered with
# prefills from the front of the batch.
# `decodes` and `prefills` are already in ascending order just based on
# the above loop
num_decodes = len(decodes)
num_prefills = len(prefills)
first_prefill = 0
modified_batch = False
for i in range(1, min(num_decodes, num_prefills) + 1):
# If the decode is at the "back" of the batch, i, we can swap it
# with the prefill closest to the front of the batch
if decodes[num_decodes - i] >= num_decodes:
input_batch.swap_states(prefills[first_prefill],
decodes[num_decodes - i])
first_prefill += 1
modified_batch = True
else:
break
# Save for next `build` call
# TODO(lucas): this is a bit of a hack, we should probably have a
# better way of doing this
return modified_batch
def build(
self,
common_prefix_len: int,
common_attn_metadata: AscendCommonAttentionMetadata,
model: nn.Module,
) -> AscendSFAMetadata:
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
query_start_loc = common_attn_metadata.query_start_loc
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = \
split_decodes_and_prefills(common_attn_metadata, decode_threshold=self.decode_threshold)
assert num_decodes + num_prefills == num_reqs
assert num_decode_tokens + num_prefill_tokens == num_actual_tokens
# Note(simon): be careful about the CPU <> GPU memory movement in this
# function. We should avoid GPU -> CPU sync as much as possible because
# it blocks on all previous kernels.
device = self.device
block_table = (common_attn_metadata.block_table_tensor[:num_reqs])
slot_mapping = common_attn_metadata.slot_mapping[:
num_actual_tokens].to(
device,
non_blocking=True)
input_positions = common_attn_metadata.positions[:
num_actual_tokens].long(
)
if self.cos_cache is None:
self.cos_cache = model.model.layers[
model.model.start_layer].self_attn.rotary_emb.cos_cached
self.sin_cache = model.model.layers[
model.model.start_layer].self_attn.rotary_emb.sin_cached
if self.cos_cache.dtype != self.model_config.dtype: # type: ignore
self.cos_cache = self.cos_cache.to( # type: ignore
self.model_config.dtype) # type: ignore
self.sin_cache = self.sin_cache.to( # type: ignore
self.model_config.dtype) # type: ignore
query_seq_lens_cpu = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
query_lens = query_seq_lens_cpu[:num_reqs]
seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs]
num_computed_tokens_cpu = (seq_lens - query_lens)
prefill_metadata = None
chunked_context_metadata = None
if num_prefills > 0:
reqs_start = num_decodes # prefill_start
tokens_start = num_decode_tokens
max_query_len = query_lens[reqs_start:].max().item()
max_seq_lens = seq_lens[reqs_start:].max().item()
prefill_query_start_loc = query_start_loc[
reqs_start:] - query_start_loc[reqs_start]
context_lens_cpu = num_computed_tokens_cpu[reqs_start:num_reqs]
max_context_len_cpu = context_lens_cpu.max().item()
num_prefills_with_context_cpu = (context_lens_cpu > 0).sum().item()
if self.chunked_prefill_enabled and max_context_len_cpu > 0:
max_context_chunk = (self.chunked_prefill_workspace_size //
num_prefills_with_context_cpu)
max_context_chunk = round_down(max_context_chunk,
self.block_size)
assert max_context_chunk > 0
num_chunks = cdiv(max_context_len_cpu, max_context_chunk)
chunk_starts = torch.arange(num_chunks, dtype=torch.int32) \
.unsqueeze(1).expand(-1, num_prefills) * max_context_chunk
chunk_ends = torch.min(context_lens_cpu.unsqueeze(0),
chunk_starts + max_context_chunk)
chunk_seq_lens = (chunk_ends - chunk_starts).clamp(min=0)
cu_seq_lens_cpu = torch.zeros(num_chunks,
num_prefills + 1,
dtype=torch.int32,
pin_memory=True)
torch.cumsum(chunk_seq_lens,
dim=1,
out=cu_seq_lens_cpu[:, 1:],
dtype=torch.int32)
chunked_context_metadata = \
AscendSFAPrefillMetadata.ChunkedContextMetadata(
cu_seq_lens=cu_seq_lens_cpu.to(device, non_blocking=True),
starts=chunk_starts.to(device, non_blocking=True),
seq_tot=chunk_seq_lens.sum(dim=1).tolist(),
max_seq_lens=chunk_seq_lens.max(dim=1).values.tolist(),
chunk_seq_lens=chunk_seq_lens,
workspace=self.chunked_prefill_workspace,
)
prefill_input_positions = input_positions[tokens_start:]
cos = self.cos_cache[
prefill_input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
sin = self.sin_cache[
prefill_input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
actual_query_lens = torch.tensor(query_lens[reqs_start:],
dtype=torch.int32).npu()
query_lens_prefill_sfa = torch.cumsum(actual_query_lens,
dim=0).to(torch.int32)
seq_lens_prefill_sfa = seq_lens[reqs_start:].to(torch.int32).npu()
prefill_metadata = AscendSFAPrefillMetadata(
attn_mask=common_attn_metadata.attn_mask,
query_lens=query_lens_prefill_sfa,
seq_lens=seq_lens_prefill_sfa,
context_lens=seq_lens[reqs_start:],
input_positions=prefill_input_positions,
block_table=block_table[reqs_start:, ...],
max_query_len=max_query_len,
max_seq_lens=max_seq_lens,
query_start_loc=prefill_query_start_loc,
chunked_context=chunked_context_metadata,
sin=sin,
cos=cos,
)
decode_metadata = None
if num_decodes > 0:
# Notice that num_decodes != num_decode_tokens in SpecDecoding Scenario
actual_seq_lengths_q = query_start_loc[1:num_decodes + 1].to(
torch.int32).npu()
max_seq_lens = seq_lens[:num_decodes].max().item()
seq_lens = seq_lens[:num_decodes].to(torch.int32).npu()
input_positions = input_positions[:num_decode_tokens]
block_table = block_table[:num_decodes, ...]
seq_lens_list = seq_lens.tolist()
cos = self.cos_cache[input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
sin = self.sin_cache[input_positions].unsqueeze( # type: ignore
1).unsqueeze(2)
decode_metadata = AscendSFADecodeMetadata(
input_positions=input_positions,
block_table=block_table,
seq_lens=seq_lens,
seq_lens_list=seq_lens_list,
max_seq_lens=max_seq_lens,
attn_mask=common_attn_metadata.spec_attn_mask,
actual_seq_lengths_q=actual_seq_lengths_q,
sin=sin,
cos=cos)
return self.metadata_cls( # type: ignore
num_input_tokens=common_attn_metadata.num_input_tokens,
num_actual_tokens=num_actual_tokens,
query_lens=query_lens.tolist(),
slot_mapping=slot_mapping,
head_dim=self.model_config.get_head_size(),
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
num_prefills=num_prefills,
attn_mask=common_attn_metadata.attn_mask,
attn_state=common_attn_metadata.attn_state,
prefill=prefill_metadata,
decode=decode_metadata,
query_start_loc=query_start_loc,
block_tables=block_table,
seq_lens=seq_lens,
enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp,
)
class PrefillSFAPreprocessResult(NamedTuple):
q_nope: Optional[torch.Tensor] = None
q_pe: Optional[torch.Tensor] = None
k_nope: Optional[torch.Tensor] = None
k_pe: Optional[torch.Tensor] = None
topk_indices: Optional[torch.Tensor] = None
query_states: Optional[torch.Tensor] = None
key_states: Optional[torch.Tensor] = None
class DecodeSFAPreprocessResult(NamedTuple):
q_nope: Optional[torch.Tensor] = None
q_pe: Optional[torch.Tensor] = None
# nope_cache: Optional[torch.Tensor] = None
# rope_cache: Optional[torch.Tensor] = None
topk_indices: Optional[torch.Tensor] = None
query_states: Optional[torch.Tensor] = None
key_states: Optional[torch.Tensor] = None
bsz: Optional[int] = None
class AscendSFAImpl(MLAAttentionImpl):
"""
NOTE: Please read the comment at the top of the file before trying to
understand this class
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[list[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
**kwargs,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_kv_heads
self.kv_cache_dtype = kv_cache_dtype
# MLA Args
self.q_lora_rank = kwargs['q_lora_rank']
self.kv_lora_rank = kwargs['kv_lora_rank']
self.qk_nope_head_dim = kwargs['qk_nope_head_dim']
self.qk_rope_head_dim = kwargs['qk_rope_head_dim']
self.qk_head_dim = kwargs['qk_head_dim']
self.v_head_dim = kwargs['v_head_dim']
self.rotary_emb = kwargs['rotary_emb']
self.q_proj = kwargs['q_proj']
self.kv_b_proj = kwargs['kv_b_proj']
self.o_proj = kwargs['o_proj']
self.indexer = kwargs['indexer']
self.kv_a_proj_with_mqa = kwargs.get('kv_a_proj_with_mqa', None)
self.kv_a_layernorm = kwargs.get('kv_a_layernorm', None)
self.q_a_proj = kwargs.get('q_a_proj', None)
self.q_a_layernorm = kwargs.get('q_a_layernorm', None)
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.tp_size = get_tensor_model_parallel_world_size()
self.num_heads_per_rank = self.num_heads // self.tp_size
if self.q_a_proj is not None:
self.q_b_proj = self.q_proj
else:
self.q_b_proj = None
ascend_config = get_ascend_config()
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
self.enable_kv_nz = ascend_config.torchair_graph_config.enable_kv_nz
vllm_config = get_current_vllm_config()
self.ring_mla_mask_size = 512
self.prefill_mask = None
# indexer param
self.dim = self.indexer.dim
self.n_heads: int = self.indexer.n_heads # 64
self.head_dim: int = self.indexer.head_dim # 128
self.index_topk: int = self.indexer.index_topk # 2048
self.wq_b = self.indexer.wq_b
self.wk = self.indexer.wk
self.weights_proj = self.indexer.weights_proj
self.k_norm = self.indexer.k_norm
self.softmax_scale = self.indexer.softmax_scale
# Adapt torch air graph mode with spec decoding.
speculative_config = vllm_config.speculative_config
if speculative_config is not None:
self.spec_token_num = speculative_config.num_speculative_tokens
assert self.spec_token_num > 0
self.cp_size = 1
def process_weights_after_loading(self, act_dtype: torch.dtype):
def get_layer_weight(layer):
WEIGHT_NAMES = ("weight", "qweight", "weight_packed")
for attr in WEIGHT_NAMES:
if hasattr(layer, attr):
return getattr(layer, attr)
raise AttributeError(
f"Layer '{layer}' has no recognized weight attribute:"
f" {WEIGHT_NAMES}.")
def get_and_maybe_dequant_weights(layer: LinearBase):
if not isinstance(layer.quant_method, UnquantizedLinearMethod):
# NOTE: This should only be used offline, since it's O(N^3)
eye = torch.eye(layer.input_size_per_partition,
dtype=act_dtype,
device=get_layer_weight(layer).device)
dequant_weights = layer.quant_method.apply(layer,
eye,
bias=None)
del eye
# standardize to (output, input)
return dequant_weights.T
return layer.weight
# we currently do not have quantized bmm's which are needed for
# `W_UV` and `W_UK_T`, we we just store fp16/bf16 copies and perform
# the bmm's in 16-bit, the extra memory overhead of this is fairly low
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj).T
assert kv_b_proj_weight.shape == (
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim)), (
f"{kv_b_proj_weight.shape=}, "
f"{self.kv_lora_rank=}, "
f"{self.num_heads=}, "
f"{self.qk_nope_head_dim=}, "
f"{self.v_head_dim=}")
kv_b_proj_weight = kv_b_proj_weight.view(
self.kv_lora_rank,
self.num_heads,
self.qk_nope_head_dim + self.v_head_dim,
)
self.kv_b_proj_w_k, self.kv_b_proj_w_v = kv_b_proj_weight.split(
[self.qk_nope_head_dim, self.v_head_dim], dim=-1)
# Convert from (L, N, V) to (N, L, V)
self.kv_b_proj_w_v = self.kv_b_proj_w_v.transpose(0, 1).contiguous()
# Convert from (L, N, P) to (N, P, L)
self.kv_b_proj_w_k = self.kv_b_proj_w_k.permute(1, 2, 0).contiguous()
# Waiting for BMM NZ support
# self.W_UV.data = torch_npu.npu_format_cast(self.W_UV.data, 29)
# self.W_UK_T.data = torch_npu.npu_format_cast(self.W_UK_T.data, 29)
def _sfa_preprocess(self, hidden_states, kv_cache, attn_metadata,
need_gather_q_kv):
# SFA Preprocess:
# 1. Perform q_a_proj and q_a_layernorm to obtain q_c
# 2. Perform kv_a_proj_with_mqa to obtain kv_no_split
# 3. If need_gather_q_kv, perform all_gather.
# 4. Preprocess decode tokens, write kv cache and get:
# decode_ql_nope, decode_q_pe, decode_k_pe, decode_k_nope
# 5. Preprocess prefill tokens, write kv cache and get:
# prefill_q_nope, prefill_q_pe, prefill_k_nope, prefill_k_pe, prefill_value
has_decode = attn_metadata.num_decodes > 0
has_prefill = attn_metadata.num_prefills > 0
num_decode_tokens = attn_metadata.num_decode_tokens
num_actual_tokens = attn_metadata.num_actual_tokens
if need_gather_q_kv:
# q_c = get_tp_group().all_gather(q_c, 0)
# kv_no_split = get_tp_group().all_gather(kv_no_split, 0)
hidden_states = get_tp_group().all_gather(hidden_states, 0)
# hidden_states_decode = hidden_states[:num_decode_tokens]
# if self.q_a_proj is not None:
# npu_prefetch(self.q_a_proj.weight,
# hidden_states,
# enabled=self.enable_prefetch)
# ckq = self.q_a_proj(hidden_states) # q down
# q_c = self.q_a_layernorm(ckq) # q down layernorm
# else:
# q_c = hidden_states
# kv_no_split = self.kv_a_proj_with_mqa(hidden_states) # c_kv
# Process for shared_expert_dp
decode_preprocess_res = None
prefill_preprocess_res = None
# Preprocess for decode tokens
if has_decode:
q_len = 1
hidden_states_decode = hidden_states[:num_decode_tokens]
decode_kq = self.q_a_proj(hidden_states_decode) # q down
decode_q_c = self.q_a_layernorm(decode_kq) # q down layernorm
decode_kv_no_split = self.kv_a_proj_with_mqa(
hidden_states_decode) # c_kv
# decode_q_c = q_c[:num_decode_tokens]
decode_slot_mapping = attn_metadata.slot_mapping[:
num_decode_tokens]
# decode_kv_no_split = decode_kv_no_split[:num_decode_tokens]
decode_q = self.q_b_proj(decode_q_c)
bsz, _ = decode_q.shape
decode_q = decode_q.view(bsz, self.num_heads, 1, self.qk_head_dim)
decode_q_nope, decode_q_pe = torch.split(
decode_q, [self.qk_nope_head_dim, self.qk_rope_head_dim],
dim=-1)
decode_q_nope = decode_q_nope.view(
-1, self.num_heads, self.qk_nope_head_dim).transpose(0, 1)
decode_q_nope = (torch.matmul(decode_q_nope,
self.kv_b_proj_w_k).transpose(
1,
0).view(bsz, q_len,
self.num_heads,
self.kv_lora_rank))
# stream2 kv
key_cache = kv_cache[0]
value_cache = kv_cache[1]
cos = attn_metadata.decode.cos
sin = attn_metadata.decode.sin
cos_q, sin_q = cos, sin
cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
decode_kv_no_split = decode_kv_no_split.unsqueeze(1).unsqueeze(1)
decode_k_rope, decode_k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
decode_kv_no_split,
self.kv_a_layernorm.weight,
cos,
sin,
decode_slot_mapping.to(torch.int64),
value_cache,
key_cache,
c_kv_scale=None,
epsilon=self.kv_a_layernorm.variance_epsilon,
cache_mode='PA') # adapter NZ
# nz_block_size = 16
# KVCACHE_NZ_DIM = 16
# decode_k_nope = decode_k_nope.view(block_num, 1, self.kv_lora_rank // nz_block_size, block_size, nz_block_size)
# decode_k_rope = decode_k_rope.view(block_num, 1, self.qk_rope_head_dim // KVCACHE_NZ_DIM, block_size, KVCACHE_NZ_DIM)
decode_q_pe = torch_npu.npu_interleave_rope(decode_q_pe, cos,
sin) # BNSD
decode_q_nope = decode_q_nope.view(bsz, self.num_heads,
self.kv_lora_rank)
decode_q_pe = decode_q_pe.view(bsz, self.num_heads, -1)
topk_indices = self.indexer_select(hidden_states_decode,
decode_q_c,
attn_metadata=attn_metadata,
cos=cos,
sin=sin,
kv_cache=kv_cache)
query_states = (decode_q_nope, decode_q_pe)
key_states = (decode_k_nope, decode_k_rope)
decode_preprocess_res = DecodeSFAPreprocessResult(
q_nope=decode_q_nope,
q_pe=decode_q_pe,
# nope_cache = nope_cache,
# rope_cache = rope_cache,
topk_indices=topk_indices,
query_states=query_states,
key_states=key_states,
bsz=bsz,
)
# Preprocess for prefill tokens
if has_prefill:
bsz = 1
hidden_states_prefill = hidden_states[
num_decode_tokens:num_actual_tokens]
prefill_kq = self.q_a_proj(hidden_states_prefill) # q down
prefill_q_c = self.q_a_layernorm(prefill_kq) # q down layernorm
prefill_kv_no_split = self.kv_a_proj_with_mqa(
hidden_states_prefill) # c_kv
# prefill_q_c = q_c[
# num_decode_tokens:num_actual_tokens]
prefill_slot_mapping = attn_metadata.slot_mapping[
num_decode_tokens:num_actual_tokens]
# decode_kv_no_split = decode_kv_no_split[:num_decode_tokens]
prefill_slot_mapping = attn_metadata.slot_mapping[
num_decode_tokens:num_actual_tokens]
# prefill_kv_no_split = kv_no_split[
# num_decode_tokens:num_actual_tokens]
# prefill_qr = prefill_q_c[num_decode_tokens:num_actual_tokens]
prefill_qr = prefill_q_c
prefill_q = self.q_b_proj(prefill_qr)
prefill_q = prefill_q.view(-1, self.num_heads, self.qk_head_dim)
prefill_q_nope, prefill_q_pe = torch.split(
prefill_q, [self.qk_nope_head_dim, self.qk_rope_head_dim],
dim=-1)
prefill_q_nope = prefill_q_nope.view(
-1, self.num_heads, self.qk_nope_head_dim).transpose(0, 1)
prefill_q_nope = (torch.matmul(prefill_q_nope,
self.kv_b_proj_w_k).transpose(
1,
0).view(-1, self.num_heads,
self.kv_lora_rank))
prefill_q_pe = prefill_q_pe.unsqueeze(2)
# stream2 kv
nope_cache = kv_cache[0]
rope_cache = kv_cache[1]
cos = attn_metadata.prefill.cos
sin = attn_metadata.prefill.sin
cos_q, sin_q = cos, sin
# cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
# sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
prefill_q_pe = torch_npu.npu_interleave_rope(
prefill_q_pe, cos_q, sin_q) # BNSD
prefill_q_pe = prefill_q_pe.squeeze(2) #BSH
# q[..., self.qk_nope_head_dim:] = prefill_q_pe # TODO:????
prefill_latent_cache = prefill_kv_no_split # (B,S,N,D)
prefill_k_pe, prefill_k_nope, _, _ = torch_npu.npu_kv_rmsnorm_rope_cache(
prefill_latent_cache.view(
-1, 1, 1, self.kv_lora_rank + self.qk_rope_head_dim),
self.kv_a_layernorm.weight,
cos.view(-1, 1, 1, self.qk_rope_head_dim),
sin.view(-1, 1, 1, self.qk_rope_head_dim),
prefill_slot_mapping.to(torch.int64),
rope_cache,
nope_cache,
k_rope_scale=None,
c_kv_scale=None,
k_rope_offset=None,
c_kv_offset=None,
epsilon=self.kv_a_layernorm.variance_epsilon,
cache_mode="PA")
topk_indices = self.indexer_select(x=hidden_states_prefill,
qr=prefill_qr,
kv_cache=kv_cache,
cos=cos,
sin=sin,
attn_metadata=attn_metadata)
query_states = (prefill_q_nope, prefill_q_pe)
key_states = (prefill_k_nope, prefill_k_pe)
prefill_preprocess_res = PrefillSFAPreprocessResult(
q_nope=prefill_q_nope,
q_pe=prefill_q_pe,
topk_indices=topk_indices,
k_nope=prefill_k_nope,
k_pe=prefill_k_pe,
query_states=query_states,
key_states=key_states,
)
return decode_preprocess_res, prefill_preprocess_res
def forward(
self,
hidden_states: torch.Tensor, # query in unified attn
kv_cache: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
attn_metadata: M,
need_gather_q_kv: bool = False,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert output is not None, "Output tensor must be provided."
if attn_metadata is None:
# Profiling run.
return output.fill_(0)
num_actual_tokens = attn_metadata.num_actual_tokens
assert attn_metadata.num_decodes is not None and \
attn_metadata.num_prefills is not None and \
attn_metadata.num_decode_tokens is not None
num_decode_tokens = attn_metadata.num_decode_tokens
# Inputs and outputs may be padded for CUDA graphs
output = output[:num_actual_tokens, ...]
o_proj_input_shape = (num_actual_tokens,
self.num_heads * self.v_head_dim)
o_proj_input = torch.empty(o_proj_input_shape,
dtype=hidden_states.dtype,
device=hidden_states.device)
# SFA Preprocess
decode_preprocess_res, prefill_preprocess_res = self._sfa_preprocess(
hidden_states, kv_cache, attn_metadata, need_gather_q_kv)
if decode_preprocess_res is not None:
# bsz, q_len, _, _ = query_states[0].shape
decode_attn_output = self.apply_attention_fusion(
query_states=decode_preprocess_res.query_states,
key_states=decode_preprocess_res.key_states,
attn_metadata=attn_metadata,
topk_indices=decode_preprocess_res.topk_indices)
o_proj_input[:num_decode_tokens] = decode_attn_output
if prefill_preprocess_res is not None:
prefill_attn_output = self.apply_attention_fusion(
query_states=prefill_preprocess_res.query_states,
key_states=prefill_preprocess_res.key_states,
attn_metadata=attn_metadata,
topk_indices=prefill_preprocess_res.topk_indices)
o_proj_input[num_decode_tokens:] = prefill_attn_output
output[...] = self.mla_epilog(o_proj_input, absorb=True)
return output
def apply_attention_fusion(self, query_states, key_states, topk_indices,
attn_metadata: M):
# repeat k/v heads if n_kv_heads < n_heads
q_nope, q_pe = query_states
k_nope, k_rope = key_states
if attn_metadata.prefill is not None:
prefill_metadata = attn_metadata.prefill
slc_fa_fusion = torch.ops.custom.npu_sparse_flash_attention(
query=q_nope,
key=k_nope,
value=k_nope,
sparse_indices=topk_indices,
scale_value=self.scale,
sparse_block_size=1,
block_table=prefill_metadata.block_table,
actual_seq_lengths_query=prefill_metadata.query_lens,
actual_seq_lengths_kv=prefill_metadata.seq_lens,
query_rope=q_pe,
key_rope=k_rope,
layout_query="TND",
layout_kv="PA_BSND",
sparse_mode=3,
)
elif attn_metadata.decode is not None:
decode_metadata = attn_metadata.decode
slc_fa_fusion = torch.ops.custom.npu_sparse_flash_attention(
query=q_nope,
key=k_nope,
value=k_nope,
sparse_indices=topk_indices,
scale_value=self.scale,
sparse_block_size=1,
block_table=attn_metadata.decode.block_table,
actual_seq_lengths_query=decode_metadata.actual_seq_lengths_q,
actual_seq_lengths_kv=decode_metadata.seq_lens,
query_rope=q_pe,
key_rope=k_rope,
layout_query="TND",
layout_kv="PA_BSND",
sparse_mode=3,
)
slc_fa_fusion = slc_fa_fusion.squeeze(1)
slc_fa_fusion = slc_fa_fusion.transpose(0, 1)
# input shape [N//attn_tp_size, T(bs*q_len), D]
# output shape [T(bs*q_len), N//attn_tp_size, D]
attn_output = torch.matmul(slc_fa_fusion,
self.kv_b_proj_w_v).transpose(1, 0).reshape(
-1, self.num_heads * self.v_head_dim)
# Note: Considering the fusion rules of TBMM, attn_output shape requires a 3-dim shape, and
# with appropriate tensor stride for the later 'view' operation if oproj_tp_size > 1.
# after reshape: [T(bs*q_len), 1, N//attn_tp_size*D]
# attn_output = attn_output.reshape(-1, self.num_heads * self.v_head_dim)
return attn_output
def mla_epilog(self,
attn_output: torch.Tensor = None,
absorb: bool = False):
# TODO: need to check
attn_output = self.o_proj(attn_output.reshape(attn_output.shape[0],
-1),
is_prefill=True,
is_force_scatter=False)
return attn_output
def indexer_select(
self,
x: torch.Tensor,
qr: torch.Tensor,
kv_cache: Tuple[torch.Tensor, torch.Tensor, torch.Tensor],
cos,
sin,
attn_metadata: M,
):
if attn_metadata.prefill is not None:
actual_seq_lengths_query = attn_metadata.prefill.query_lens
actual_seq_lengths_key = attn_metadata.prefill.seq_lens
block_table = attn_metadata.prefill.block_table
elif attn_metadata.decode is not None:
actual_seq_lengths_query = attn_metadata.decode.actual_seq_lengths_q
actual_seq_lengths_key = attn_metadata.decode.seq_lens
block_table = attn_metadata.decode.block_table
cos_q, sin_q = cos, sin
cos = cos.view(-1, 1, 1, self.qk_rope_head_dim)
sin = sin.view(-1, 1, 1, self.qk_rope_head_dim)
# q process in new stream
q = self.wq_b(qr) # [b,s,1536] @ [1536,64*128] = [b,s,64*128]
q = q.view(-1, self.n_heads, self.head_dim) # [b,s,64,128]
q_pe, q_nope = torch.split(
q, [self.qk_rope_head_dim, self.head_dim - self.qk_rope_head_dim],
dim=-1) # [b,s,64,64+64]
q_pe = q_pe.unsqueeze(2)
q_pe = torch_npu.npu_interleave_rope(q_pe, cos_q, sin_q)
q_pe = q_pe.squeeze(2)
q = torch.cat([q_pe, q_nope], dim=-1) # [b*s,64,128]
k_proj = self.wk(x) # [b,s,7168] @ [7168,128] = [b,s,128]
k = self.k_norm(k_proj).unsqueeze(1)
k_pe, k_nope = torch.split(
k, [self.qk_rope_head_dim, self.head_dim - self.qk_rope_head_dim],
dim=-1) # [b,s,64+64]
k_pe = k_pe.unsqueeze(2)
k_pe = torch_npu.npu_interleave_rope(k_pe, cos, sin)
k_pe = k_pe.squeeze(2)
k = torch.cat([k_pe, k_nope], dim=-1) # [b*s,128]
if kv_cache is not None:
torch_npu.npu_scatter_nd_update_(kv_cache[2].view(-1, k.shape[-1]),
attn_metadata.slot_mapping.view(
-1, 1),
k.view(-1,
k.shape[-1])) # b, s, n, d
weights = self.weights_proj(x)
topk_indices = torch.ops.custom.npu_lightning_indexer(
query=q,
key=kv_cache[2],
weights=weights,
actual_seq_lengths_query=actual_seq_lengths_query,
actual_seq_lengths_key=actual_seq_lengths_key,
block_table=block_table,
layout_query="TND",
layout_key="PA_BSND",
sparse_count=2048,
sparse_mode=3)
return topk_indices