Files
vllm-npu-plugin/vllm_npu/core/schedule_config.py
2026-02-10 23:08:39 +08:00

109 lines
4.6 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from dataclasses import dataclass, fields
from typing import Type, Union
from vllm.config import SchedulerConfig
MAX_INT = 2147483647
@dataclass
class AscendSchedulerConfig(SchedulerConfig):
enable_chunked_prefill: bool = False
max_long_partial_prefills: int = 1
long_prefill_token_threshold: int = MAX_INT
policy: str = "fcfs"
scheduler_cls: Union[str, Type[object]] = (
"vllm_npu.core.scheduler.AscendScheduler")
enable_pd_transfer: bool = False
decode_max_num_seqs: int = 0
@classmethod
def initialize_from_config(
cls,
vllm_scheduler_config: SchedulerConfig,
ascend_scheduler_config,
):
scheduler_config = {
field.name: getattr(vllm_scheduler_config, field.name)
for field in fields(vllm_scheduler_config) if field.init
}
# Override default values into original SchedulerConfig
scheduler_config["enable_chunked_prefill"] = False
scheduler_config["max_long_partial_prefills"] = None
scheduler_config["long_prefill_token_threshold"] = None
scheduler_config["policy"] = "fcfs"
scheduler_config["scheduler_cls"] = (
"vllm_npu.core.scheduler.AscendScheduler")
scheduler_config["enable_pd_transfer"] = False
scheduler_config["decode_max_num_seqs"] = 0
# Override params in original SchedulerConfig with params in ascend_scheduler_config
for k, _ in scheduler_config.items():
if hasattr(ascend_scheduler_config, k):
scheduler_config[k] = getattr(ascend_scheduler_config, k)
return cls(**scheduler_config)
def __post_init__(self) -> None:
self.max_num_encoder_input_tokens = self.max_num_batched_tokens
self.encoder_cache_size = self.max_num_batched_tokens
self.chunked_prefill_enabled = self.enable_chunked_prefill
if (self.max_num_batched_tokens < self.max_model_len
and not self.chunked_prefill_enabled):
raise ValueError(
"Ascend scheduler is enabled without chunked prefill feature. "
f"Argument max_num_batched_tokens ({self.max_num_batched_tokens}) is "
f"smaller than max_model_len ({self.max_model_len}). "
"This effectively limits the maximum sequence length to "
"max_num_batched_tokens and makes vLLM reject longer "
"sequences. Please increase max_num_batched_tokens or "
"decrease max_model_len.")
# concurrent partial prefills. Default is 1 meaning not enabled.
if self.max_long_partial_prefills is None:
self.max_long_partial_prefills = 1
self.long_prefill_token_threshold = MAX_INT
if self.long_prefill_token_threshold is None or \
self.long_prefill_token_threshold <= 0:
if self.max_model_len is None:
self.long_prefill_token_threshold = MAX_INT
else:
self.long_prefill_token_threshold = \
max(1, int(self.max_model_len * 0.04))
if self.max_long_partial_prefills < 0:
raise ValueError(
f"max_long_partial_prefills must be non-negative, but got "
f"{self.max_long_partial_prefills}")
if self.long_prefill_token_threshold < 0:
raise ValueError(
f"long_prefill_token_threshold must be non-negative, but got "
f"{self.long_prefill_token_threshold}")
if self.policy != "fcfs":
raise NotImplementedError(
f"currently AscendScheduler only supports fcfs policy, got {self.policy}"
)
if self.send_delta_data:
raise NotImplementedError(
"currently AscendScheduler doesn't support send_delta_data.")
if getattr(self, "scheduler_delay_factor", 0) > 0:
raise NotImplementedError(
"currently AscendScheduler doesn't support scheduler_delay_factor."
)