mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
116 lines
3.9 KiB
Python
116 lines
3.9 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Adapted from vllm/model_executor/models/qwen2_vl.py
|
|
# This file is a part of the vllm-ascend project.
|
|
|
|
import torch
|
|
import vllm.envs as envs_vllm
|
|
from vllm.config import ParallelConfig
|
|
|
|
from vllm_npu.utils import is_310p
|
|
|
|
|
|
def parallel_config_get_dp_port(self) -> int:
|
|
"""
|
|
We might need to initialize process groups in multiple
|
|
processes that is related to data parallelism,
|
|
e.g. both in the worker and in the engine, which
|
|
can live in different processes. To avoid port conflicts, we
|
|
increment the port number each time we need to initialize a
|
|
new process group related to data parallelism.
|
|
"""
|
|
answer = self.data_parallel_master_port
|
|
self.data_parallel_master_port += 1
|
|
|
|
# NOTE: Get port from envs directly when using torchrun
|
|
port = envs_vllm.VLLM_DP_MASTER_PORT if envs_vllm.VLLM_DP_MASTER_PORT else answer
|
|
return port
|
|
|
|
|
|
ParallelConfig.get_next_dp_init_port = parallel_config_get_dp_port
|
|
|
|
|
|
class NullHandle:
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def wait(self):
|
|
pass
|
|
|
|
|
|
def communication_adaptation_310p():
|
|
|
|
def broadcast310p_wrapper(fn):
|
|
|
|
def broadcast310p(tensor, src, group=None, async_op=False):
|
|
if tensor.device == torch.device('cpu'):
|
|
return fn(tensor, src, group, async_op)
|
|
rank = torch.distributed.get_rank(group)
|
|
world_size = torch.distributed.get_world_size(group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
tensor_list[rank] = tensor
|
|
torch.distributed.all_gather(tensor_list, tensor, group=group)
|
|
tensor[...] = tensor_list[src]
|
|
if async_op:
|
|
return NullHandle()
|
|
else:
|
|
return None
|
|
|
|
return broadcast310p
|
|
|
|
torch.distributed.broadcast = broadcast310p_wrapper(
|
|
torch.distributed.broadcast)
|
|
torch.distributed.distributed_c10d.broadcast = broadcast310p_wrapper(
|
|
torch.distributed.distributed_c10d.broadcast)
|
|
|
|
def all_reduce_wrapper_310p(fn):
|
|
|
|
def all_reduce(
|
|
tensor,
|
|
op=torch.distributed.ReduceOp.SUM,
|
|
group=None,
|
|
async_op=False,
|
|
):
|
|
if tensor.dtype != torch.int64:
|
|
return fn(tensor, op, group, async_op)
|
|
rank = torch.distributed.get_rank(group)
|
|
world_size = torch.distributed.get_world_size(group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
tensor_list[rank] = tensor
|
|
torch.distributed.all_gather(tensor_list, tensor, group=group)
|
|
if op == torch.distributed.ReduceOp.SUM:
|
|
return torch.stack(tensor_list).sum(0)
|
|
elif op == torch.distributed.ReduceOp.MAX:
|
|
return torch.tensor(
|
|
torch.stack(tensor_list).cpu().numpy().max(0),
|
|
device=tensor.device,
|
|
)
|
|
else:
|
|
raise RuntimeError(f"not implement op {op}")
|
|
|
|
return all_reduce
|
|
|
|
torch.distributed.all_reduce = all_reduce_wrapper_310p(
|
|
torch.distributed.all_reduce)
|
|
torch.distributed.distributed_c10d.all_reduce = all_reduce_wrapper_310p(
|
|
torch.distributed.distributed_c10d.all_reduce)
|
|
|
|
|
|
if is_310p():
|
|
communication_adaptation_310p()
|