mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 19:50:15 +00:00
235 lines
11 KiB
Python
235 lines
11 KiB
Python
import ast
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config.speculative import SpeculativeConfig
|
|
from vllm.logger import logger
|
|
|
|
|
|
def __post_init__(self):
|
|
|
|
# Note: "method" is a new parameter that helps to extend the
|
|
# configuration of non-model-based proposers, and the "model" parameter
|
|
# will be used to set the draft model, eagle head, or additional weight
|
|
# when needed. If users do not specify "method", the speculative method
|
|
# will be detected automatically if possible. If the speculative method
|
|
# can not be detected, it will be considered as the "draft_model" by
|
|
# default.
|
|
|
|
if self.model is None and self.num_speculative_tokens is not None:
|
|
# TODO(Shangming): Refactor mtp configuration logic when supporting
|
|
if (self.target_model_config
|
|
and self.target_model_config.hf_text_config.model_type
|
|
in ("deepseek_v3", "deepseek_v32", "mimo", "ernie4_5_moe",
|
|
"qwen3_next")):
|
|
# use the draft model from the same model:
|
|
self.model = self.target_model_config.model
|
|
# Align the quantization of draft model for cases such as
|
|
# --quantization fp8 with a bf16 checkpoint.
|
|
if not self.quantization:
|
|
self.quantization = self.target_model_config.quantization
|
|
elif self.method in ("ngram", "[ngram]"):
|
|
self.model = "ngram"
|
|
else:
|
|
raise ValueError("num_speculative_tokens was provided but without "
|
|
"speculative model.")
|
|
|
|
# Automatically configure the method for ngram when "model" is used
|
|
# instead of "method"
|
|
if self.method is None and (self.model is not None
|
|
and self.model in ("ngram", "[ngram]")):
|
|
self.method = "ngram"
|
|
|
|
if self.method in ("ngram", "[ngram]"):
|
|
# Unified to "ngram" internally
|
|
self.method = "ngram"
|
|
# Set default values if not provided
|
|
if (self.prompt_lookup_min is None and self.prompt_lookup_max is None):
|
|
# TODO(woosuk): Tune these values. They are arbitrarily chosen.
|
|
self.prompt_lookup_min = 5
|
|
self.prompt_lookup_max = 5
|
|
elif self.prompt_lookup_min is None:
|
|
assert self.prompt_lookup_max is not None
|
|
self.prompt_lookup_min = self.prompt_lookup_max
|
|
elif self.prompt_lookup_max is None:
|
|
assert self.prompt_lookup_min is not None
|
|
self.prompt_lookup_max = self.prompt_lookup_min
|
|
|
|
# Validate values
|
|
if self.prompt_lookup_min < 1:
|
|
raise ValueError(
|
|
f"prompt_lookup_min={self.prompt_lookup_min} must be > 0")
|
|
if self.prompt_lookup_max < 1:
|
|
raise ValueError(
|
|
f"prompt_lookup_max={self.prompt_lookup_max} must be > 0")
|
|
if self.prompt_lookup_min > self.prompt_lookup_max:
|
|
raise ValueError(
|
|
f"prompt_lookup_min={self.prompt_lookup_min} must "
|
|
f"be <= prompt_lookup_max={self.prompt_lookup_max}")
|
|
|
|
# TODO: current we still need extract vocab_size from target model
|
|
# config, in future, we may try refactor it out, and set
|
|
# draft related config as None here.
|
|
self.draft_model_config = self.target_model_config
|
|
self.draft_parallel_config = self.target_parallel_config
|
|
else:
|
|
self.prompt_lookup_max = 0
|
|
self.prompt_lookup_min = 0
|
|
|
|
if self.model is not None:
|
|
# TODO: Move this import to the top once `ModelConfig`
|
|
# lives in `vllm.config.model`.
|
|
from vllm.config import ModelConfig
|
|
self.draft_model_config = ModelConfig(
|
|
model=self.model,
|
|
runner="draft",
|
|
tokenizer=self.target_model_config.tokenizer,
|
|
tokenizer_mode=self.target_model_config.tokenizer_mode,
|
|
trust_remote_code=self.target_model_config.trust_remote_code,
|
|
allowed_local_media_path=self.target_model_config.
|
|
allowed_local_media_path,
|
|
allowed_media_domains=self.target_model_config.
|
|
allowed_media_domains,
|
|
dtype=self.target_model_config.dtype,
|
|
seed=self.target_model_config.seed,
|
|
revision=self.revision,
|
|
code_revision=self.code_revision,
|
|
tokenizer_revision=self.target_model_config.tokenizer_revision,
|
|
spec_target_max_model_len=self.target_model_config.
|
|
max_model_len,
|
|
quantization=self.quantization,
|
|
enforce_eager=self.target_model_config.enforce_eager,
|
|
max_logprobs=self.target_model_config.max_logprobs,
|
|
hf_overrides=SpeculativeConfig.hf_config_override,
|
|
)
|
|
|
|
# Automatically detect the method
|
|
if self.method in ('eagle', 'eagle3'):
|
|
pass
|
|
# examples:
|
|
# yuhuili/EAGLE-LLaMA3-Instruct-8B
|
|
# yuhuili/EAGLE3-LLaMA3.1-Instruct-8B
|
|
# AngelSlim/Qwen3-8B_eagle3
|
|
elif "eagle-" in self.draft_model_config.model.lower():
|
|
self.method = "eagle"
|
|
elif "eagle3" in self.draft_model_config.model.lower():
|
|
self.method = "eagle3"
|
|
elif self.draft_model_config.hf_config.model_type == "medusa":
|
|
self.method = "medusa"
|
|
elif (self.draft_model_config.hf_config.model_type ==
|
|
"mlp_speculator"):
|
|
self.method = "mlp_speculator"
|
|
elif (self.draft_model_config.hf_config.model_type
|
|
in ("deepseek_mtp", "mimo_mtp", "glm4_moe_mtp")):
|
|
self.method = "deepseek_mtp"
|
|
if self.num_speculative_tokens > 1:
|
|
logger.warning(
|
|
"All Deepseek MTP models only have " \
|
|
"one layer. Might need some code changes " \
|
|
"to support multiple layers."
|
|
)
|
|
elif (self.draft_model_config.hf_config.model_type == "ernie_mtp"):
|
|
self.method = "ernie_mtp"
|
|
if self.num_speculative_tokens > 1:
|
|
logger.warning(
|
|
"All Ernie MTP models only have " \
|
|
"one layer. Might need some code changes " \
|
|
"to support multiple layers."
|
|
)
|
|
elif (self.draft_model_config.hf_config.model_type ==
|
|
"qwen3_next_mtp"):
|
|
self.method = "qwen3_next_mtp"
|
|
if self.num_speculative_tokens > 1:
|
|
logger.warning(
|
|
"All Qwen3Next MTP models only have " \
|
|
"one layer. Might need some code changes " \
|
|
"to support multiple layers."
|
|
)
|
|
elif (self.draft_model_config.hf_config.model_type
|
|
in ("longcat_flash_mtp")):
|
|
self.method = "longcat_flash_mtp"
|
|
if self.num_speculative_tokens > 1:
|
|
logger.warning(
|
|
"LongCat MTP models only have " \
|
|
"one layer. Might need some code changes " \
|
|
"to support multiple layers."
|
|
)
|
|
else:
|
|
self.method = "draft_model"
|
|
raise NotImplementedError(
|
|
"Speculative decoding with draft model is not "
|
|
"supported yet. Please consider using other "
|
|
"speculative decoding methods such as ngram, medusa, "
|
|
"eagle, or deepseek_mtp.")
|
|
|
|
# Replace hf_config for EAGLE draft_model
|
|
if self.method in ("eagle", "eagle3"):
|
|
if self.enable_chunked_prefill and not envs.VLLM_USE_V1:
|
|
raise ValueError(
|
|
"Chunked prefill and EAGLE are not compatible "
|
|
"when using V0.")
|
|
|
|
from vllm.transformers_utils.configs import SpeculatorsConfig
|
|
from vllm.transformers_utils.configs.eagle import EAGLEConfig
|
|
|
|
if isinstance(self.draft_model_config.hf_config,
|
|
(EAGLEConfig, SpeculatorsConfig)):
|
|
pass
|
|
else:
|
|
eagle_config = EAGLEConfig(
|
|
self.draft_model_config.hf_config,
|
|
method=self.method,
|
|
model_type="eagle")
|
|
self.draft_model_config.hf_config = eagle_config
|
|
|
|
if (self.num_speculative_tokens is not None
|
|
and hasattr(self.draft_model_config.hf_config,
|
|
"num_lookahead_tokens")):
|
|
self.draft_model_config.hf_config.num_lookahead_tokens = \
|
|
self.num_speculative_tokens
|
|
|
|
n_predict = getattr(self.draft_model_config.hf_config, "n_predict",
|
|
None)
|
|
if n_predict is not None:
|
|
if self.num_speculative_tokens is None:
|
|
# Default to max value defined in draft model config.
|
|
self.num_speculative_tokens = n_predict
|
|
elif self.num_speculative_tokens > n_predict and \
|
|
self.num_speculative_tokens % n_predict != 0:
|
|
# Ensure divisibility for MTP module reuse.
|
|
raise ValueError(
|
|
f"num_speculative_tokens:{self.num_speculative_tokens}"
|
|
f" must be divisible by {n_predict=}")
|
|
|
|
if self.speculative_token_tree is None:
|
|
# Generate chain of tokens.
|
|
self.speculative_token_tree = str([
|
|
(i + 1) * (0, ) for i in range(self.num_speculative_tokens)
|
|
])
|
|
else:
|
|
# Sort the token tree breadth-first.
|
|
tree_choices = ast.literal_eval(self.speculative_token_tree)
|
|
self.speculative_token_tree = str(
|
|
sorted(tree_choices, key=lambda t: (len(t), t)))
|
|
|
|
self.draft_tensor_parallel_size = \
|
|
SpeculativeConfig._verify_and_get_draft_tp(
|
|
self.target_parallel_config,
|
|
self.draft_tensor_parallel_size,
|
|
self.draft_model_config.hf_config
|
|
)
|
|
|
|
self.draft_model_config.max_model_len = (
|
|
SpeculativeConfig._maybe_override_draft_max_model_len(
|
|
self.max_model_len,
|
|
self.draft_model_config.max_model_len,
|
|
self.target_model_config.max_model_len,
|
|
))
|
|
|
|
self.draft_parallel_config = (
|
|
SpeculativeConfig.create_draft_parallel_config(
|
|
self.target_parallel_config,
|
|
self.draft_tensor_parallel_size))
|
|
|
|
|
|
SpeculativeConfig.__post_init__ = __post_init__
|