Files
vllm-npu-plugin/vllm_npu/ops/__init__.py
2026-02-10 23:08:39 +08:00

58 lines
2.1 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import torch
import vllm_npu.ops.common_fused_moe # noqa
import vllm_npu.ops.layernorm # noqa
import vllm_npu.ops.register_custom_ops # noqa
import vllm_npu.ops.vocab_parallel_embedding # noqa
from vllm_npu.ops.activation import AscendQuickGELU, AscendSiluAndMul
from vllm_npu.ops.rotary_embedding import (
AscendDeepseekScalingRotaryEmbedding, AscendRotaryEmbedding)
class dummyFusionOp:
default = None
def __init__(self, name=""):
self.name = name
def register_dummy_fusion_op() -> None:
torch.ops._C_ascend.rms_norm = dummyFusionOp(name="rms_norm")
torch.ops._C_ascend.fused_add_rms_norm = dummyFusionOp(
name="fused_add_rms_norm")
torch.ops._C_ascend.static_scaled_fp8_quant = dummyFusionOp(
name="static_scaled_fp8_quant")
torch.ops._C_ascend.dynamic_scaled_fp8_quant = dummyFusionOp(
name="dynamic_scaled_fp8_quant")
torch.ops._C_ascend.dynamic_per_token_scaled_fp8_quant = dummyFusionOp(
name="dynamic_per_token_scaled_fp8_quant")
torch.ops._C_ascend.rms_norm_static_fp8_quant = dummyFusionOp(
name="rms_norm_static_fp8_quant")
torch.ops._C_ascend.fused_add_rms_norm_static_fp8_quant = dummyFusionOp(
name="fused_add_rms_norm_static_fp8_quant")
torch.ops._C_ascend.rms_norm_dynamic_per_token_quant = dummyFusionOp(
name="rms_norm_dynamic_per_token_quant")
__all__ = [
"AscendQuickGELU", "AscendSiluAndMul", "AscendRotaryEmbedding",
"AscendDeepseekScalingRotaryEmbedding"
]