Files
vllm-npu-plugin/vllm_npu/torchair/torchair_worker.py
2026-02-10 23:08:39 +08:00

64 lines
3.0 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from vllm.logger import logger
import vllm_npu.envs as envs_ascend
from vllm_npu.ascend_config import get_ascend_config
from vllm_npu.torchair.torchair_model_runner import NPUTorchairModelRunner
from vllm_npu.torchair.utils import (check_kv_cache_bytes_cache_exist,
delete_torchair_cache_file,
read_kv_cache_bytes_from_file)
from vllm_npu.worker.worker_v1 import NPUWorker
class NPUTorchairWorker(NPUWorker):
"""Torchair worker bases on NPUWorker. Only torchair specified code should be added in this class."""
def determine_available_memory(self) -> int:
"""Override determine_available_memory to use cached torchair kv_cache_bytes."""
available_kv_cache_memory = super().determine_available_memory()
ascend_config = get_ascend_config()
if ascend_config.enable_shared_expert_dp:
return available_kv_cache_memory
if ascend_config.torchair_graph_config.use_cached_kv_cache_bytes:
if check_kv_cache_bytes_cache_exist():
old_kv_cache_bytes = read_kv_cache_bytes_from_file(
torch.distributed.get_rank())
if 0 < old_kv_cache_bytes <= available_kv_cache_memory:
logger.info(
f"Use cached torchair kv_cache_bytes: {old_kv_cache_bytes}"
)
self.model_runner.new_kv_cache_bytes = old_kv_cache_bytes
return old_kv_cache_bytes
else:
logger.info(
"Cached torchair kv_cache_bytes is too big, invalidate old torchair_cache"
)
delete_torchair_cache_file()
bytes_floating_tolerance = 1024 * 1024 * envs_ascend.vllm_npu_KV_CACHE_MEGABYTES_FLOATING_TOLERANCE
available_kv_cache_memory -= bytes_floating_tolerance
logger.info(f"Use new kv_cache_bytes: {available_kv_cache_memory}")
self.model_runner.new_kv_cache_bytes = available_kv_cache_memory
return available_kv_cache_memory
def init_device(self):
"""Override init_device to init torchair model runner"""
device = self._init_device()
# Init ModelRunner here, so that we have access to self.device.
self.model_runner = NPUTorchairModelRunner(self.vllm_config, device)