Files
vllm-npu-plugin/vllm_npu/torchair/ops/torchair_layernorm.py
2026-02-10 23:08:39 +08:00

79 lines
2.7 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from typing import Optional, Tuple, Union
import torch
from vllm.config import get_current_vllm_config
from vllm.model_executor.layers.layernorm import RMSNorm
_original_re_init = RMSNorm.__init__
def torchair_rmsnorm_init_(
self,
hidden_size: int,
eps: float = 1e-6,
var_hidden_size: Optional[int] = None,
has_weight: bool = True,
dtype: Optional[torch.dtype] = None,
) -> None:
_original_re_init(self, hidden_size, eps, var_hidden_size, has_weight,
dtype)
vllm_config = get_current_vllm_config()
self.bias = None
# quantization with anti_method m4 will generate none-zero norm bias
if vllm_config.quant_config is not None and \
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
self.bias = torch.nn.Parameter(torch.zeros(hidden_size),
requires_grad=False)
def torchair_rmsnorm_forward_oot(
self,
x: torch.Tensor,
residual: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""AscendRMSNorm forward in torchair mode.
The key difference from the original implementation is the removal of operators
from the torch.ops.vllm class, as these operators only function in non-torchair
modes. Adding them back would cause the graph compilation to fail.
"""
import torch_npu
from vllm_npu.utils import is_310p
if residual is not None:
if is_310p():
orig_dtype = residual.dtype
x = x + residual.to(x.dtype)
residual = x.to(orig_dtype)
x, _ = torch_npu.npu_rms_norm(x, self.weight,
self.variance_epsilon)
else:
x, _, residual = torch_npu.npu_add_rms_norm(
x, residual, self.weight, self.variance_epsilon)
if self.bias is not None:
x.add_(self.bias)
return x, residual
x, residual = torch_npu.npu_rms_norm(x, self.weight, self.variance_epsilon)
if self.bias is not None:
x.add_(self.bias)
return x