Files
vllm-npu-plugin/vllm_npu/torchair/ops/torchair_fused_moe.py
2026-02-10 23:08:39 +08:00

1410 lines
58 KiB
Python

# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/kernels/test_moe.py
import os
from typing import Any, Callable, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch_npu
from torch import nn
from vllm.config import get_current_vllm_config
from vllm.distributed import (GroupCoordinator, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.distributed.parallel_state import (get_dp_group, get_ep_group,
get_tp_group)
from vllm.forward_context import get_forward_context
from vllm.logger import logger
from vllm.model_executor.layers.fused_moe.config import \
FusedMoEConfig # isort: skip
from vllm.model_executor.layers.fused_moe.config import \
FusedMoEParallelConfig # isort: skip
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, UnquantizedFusedMoEMethod, determine_expert_map,
get_compressed_expert_map)
from vllm.model_executor.layers.quantization.base_config import \
QuantizationConfig
from vllm_npu.ascend_config import get_ascend_config
from vllm_npu.ascend_forward_context import FusedMoEState
from vllm_npu.distributed.parallel_state import get_mc2_group
from vllm_npu.eplb.core.eplb_utils import (determine_default_expert_map,
determine_default_log2phy_map)
from vllm_npu.ops.expert_load_balancer import ExpertLoadBalancer
from vllm_npu.quantization.quant_config import AscendFusedMoEMethod
from vllm_npu.torchair.ops.sequence_parallel import MetadataForPadding
from vllm_npu.torchair.utils import (get_all_reduce_merge_state,
get_rm_router_logits_state,
npu_stream_switch, npu_wait_tensor,
super_kernel)
from vllm_npu.utils import (AscendSocVersion, dispose_tensor,
get_ascend_soc_version, is_310p,
is_hierarchical_communication_enabled)
def torchair_fused_experts_with_mc2(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
moe_parallel_config: FusedMoEParallelConfig,
expert_map: torch.Tensor = None,
moe_all_to_all_group_name: Optional[str] = None,
shared_experts: Optional[Any] = None,
is_torchair: bool = False,
mc2_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
quant_mode = 0
ep_rank_id = moe_parallel_config.ep_rank
ep_world_size = moe_parallel_config.ep_size
# NOTE: Currently, when in A3 or in torchair graph, we need to pass in some extra param into dispatch & combine
need_extra_args = (get_ascend_soc_version() == AscendSocVersion.A3
or is_torchair)
# NOTE: Currently, when in A3, we need to pass in some extra param into dispatch & combine
a3_need_extra_args = get_ascend_soc_version() == AscendSocVersion.A3
# NOTE: When in A2, setting the environment variables HCCL_INTRA_PCIE_ENABLE=1 and
# HCCL_INTRA_ROCE_ENABLE=0 can reduce cross-machine communication traffic and significantly
# improve communication performance.
need_expert_scale = is_hierarchical_communication_enabled()
enable_dispatch_v2 = hasattr(torch_npu, "npu_moe_distribute_dispatch_v2")
moe_expert_num = len(expert_map)
kwargs_mc2 = {
"x": hidden_states,
"expert_ids": topk_ids,
"expert_shard_type": 0,
"shared_expert_rank_num": 0,
"moe_expert_num": moe_expert_num,
"global_bs": 0,
}
stage1_kwargs = {
"scales": None,
"quant_mode": quant_mode,
"group_ep": moe_all_to_all_group_name,
"ep_world_size": ep_world_size,
"ep_rank_id": ep_rank_id,
}
if need_extra_args:
stage1_kwargs.update({
"group_tp": moe_all_to_all_group_name,
"tp_world_size": 1,
"tp_rank_id": 0,
})
if a3_need_extra_args and enable_dispatch_v2:
stage1_kwargs.update({
"x_active_mask": mc2_mask,
})
if need_expert_scale:
stage1_kwargs.update({
"expert_scales": topk_weights.to(torch.float32),
})
kwargs_mc2.update(stage1_kwargs)
output = torch_npu.npu_moe_distribute_dispatch_v2(
**kwargs_mc2
) if enable_dispatch_v2 else torch_npu.npu_moe_distribute_dispatch(
**kwargs_mc2)
# comm_stream.wait_stream(torch.npu.current_stream())
expand_x, dynamic_scale, assist_info_for_combine, expert_token_nums, \
ep_recv_counts, _, expand_scales = output[0:7]
if shared_experts is not None:
with npu_stream_switch("moe_secondary", 0):
npu_wait_tensor(hidden_states, topk_weights)
shared_gate_up, _ = shared_experts.gate_up_proj(hidden_states)
npu_wait_tensor(shared_gate_up, expand_x)
shared_act = shared_experts.act_fn(shared_gate_up)
w1 = w1.transpose(1, 2)
group_list = expert_token_nums.to(torch.int64)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[expand_x],
weight=[w1],
split_item=2,
# 1 means count mode, to avoid cumulative operation of the group list
group_list_type=1,
group_type=0,
group_list=group_list,
)[0]
gate_up_out = torch_npu.npu_swiglu(gate_up_out_list)
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=1,
group_type=0,
group_list=group_list,
)[0]
# moeCombine
kwargs_mc2 = {
"expand_x": down_out_list,
"expert_ids": topk_ids,
"expert_scales": topk_weights.to(torch.float32),
"expert_shard_type": 0,
"shared_expert_rank_num": 0,
"moe_expert_num": moe_expert_num,
"global_bs": 0,
}
tp_recv_counts = output[5]
stage3_kwargs = {
"ep_send_counts": ep_recv_counts,
"group_ep": moe_all_to_all_group_name,
"ep_world_size": ep_world_size,
"ep_rank_id": ep_rank_id,
"expand_scales": expand_scales,
}
if enable_dispatch_v2:
stage3_kwargs.update({
"assist_info_for_combine":
assist_info_for_combine,
})
else:
stage3_kwargs.update({
"expand_idx": assist_info_for_combine,
})
if need_extra_args:
stage3_kwargs.update({
"tp_send_counts": tp_recv_counts,
"group_tp": moe_all_to_all_group_name,
"tp_world_size": 1,
"tp_rank_id": 0,
})
if a3_need_extra_args and enable_dispatch_v2:
stage3_kwargs.update({
"x_active_mask": mc2_mask,
})
kwargs_mc2.update(stage3_kwargs)
hidden_states = torch_npu.npu_moe_distribute_combine_v2(
**kwargs_mc2
) if enable_dispatch_v2 else torch_npu.npu_moe_distribute_combine(
**kwargs_mc2)
if shared_experts is None:
return hidden_states
else:
with npu_stream_switch("moe_secondary", 0):
npu_wait_tensor(shared_act, down_out_list)
shared_hidden_states, _ = shared_experts.down_proj(shared_act)
return hidden_states, shared_hidden_states
def torchair_apply_mlp(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
group_list: torch.Tensor,
group_list_type: int = 1,
) -> torch.Tensor:
"""
apply MLP: gate_up_proj -> swiglu -> down_proj
Args:
hidden_states_wrapper: wrapper of input hidden states with shape (num_tokens, hidden_size).
w1: expert weights1 with shape
(num_experts, hidden_size, intermediate_size * 2)
w2: expert weights2 with shape
(num_experts, intermediate_size, hidden_size)
group_list: number of tokens for each expert, follow cumsum mode, and
with shape (num_experts).
transpose_weight:
w1: (num_experts, intermediate_size * 2, hidden_size) ->
(num_experts, hidden_size, intermediate_size * 2)
w2: (num_experts, hidden_size, intermediate_size) ->
(num_experts, intermediate_size, hidden_size)
Returns:
hidden_states: output hidden states after MLP.
"""
w1 = w1.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)[0]
hidden_states = torch_npu.npu_swiglu(hidden_states)
w2 = w2.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)[0]
return hidden_states
# currently expert parallelism implemented with all2all
# is under-optimized.
def torchair_fused_experts_with_all2all(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
expert_map: torch.Tensor = None,
ep_group: GroupCoordinator = None,
):
original_shape = hidden_states.shape
if len(original_shape) == 3:
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
num_tokens, _ = hidden_states.shape
num_experts = w1.shape[0]
device = hidden_states.device
if expert_map is not None:
global_num_experts = len(expert_map)
local_num_experts = global_num_experts // ep_group.world_size
row_idx_len = num_tokens * top_k
row_idx = (torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=device).view(top_k, -1).permute(
1, 0).contiguous())
hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=num_tokens)
global_expert_tokens = torch.bincount(expanded_expert_idx,
minlength=global_num_experts)
scatter_sizes = global_expert_tokens.view(ep_group.world_size,
-1).sum(-1)
gather_sizes = torch.empty_like(scatter_sizes)
dist.all_to_all_single(gather_sizes,
scatter_sizes,
group=ep_group.device_group)
scatter_size_list = scatter_sizes.cpu().tolist()
gather_size_list = gather_sizes.cpu().tolist()
expanded_expert_idx = expanded_expert_idx % local_num_experts
hidden_states = ep_group.all_to_all(hidden_states, 0, 0,
scatter_size_list,
gather_size_list)
local_expert_idx = ep_group.all_to_all(expanded_expert_idx, 0, 0,
scatter_size_list,
gather_size_list)
sorted_local_expert_idx, sorted_idx = torch.sort(local_expert_idx)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
sorted_local_expert_idx, local_num_experts).to(torch.int64)
hidden_states = hidden_states[sorted_idx]
else:
row_idx_len = num_tokens * top_k
row_idx = torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=topk_weights.device).view(
top_k, -1).permute(1, 0).contiguous()
hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=num_tokens)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)[0]
hidden_states = torch_npu.npu_swiglu(gate_up_out_list)
w2 = w2.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)[0]
if expert_map is not None:
resorted_idx = torch.argsort(sorted_idx)
hidden_states = hidden_states[resorted_idx]
hidden_states = ep_group.all_to_all(hidden_states, 0, 0,
gather_size_list,
scatter_size_list)
final_hidden_states = torch_npu.npu_moe_finalize_routing(
hidden_states,
skip1=None,
skip2=None,
bias=None,
scales=topk_weights,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
else:
# TODO: Reorder device memory 2 times here, replace the current
# implementation here when suitable operators become available.
final_hidden_states = torch_npu.npu_moe_finalize_routing(
hidden_states,
skip1=None,
skip2=None,
bias=None,
scales=topk_weights,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
if len(original_shape) == 3:
final_hidden_states = final_hidden_states.view(original_shape)
return final_hidden_states
def torchair_fused_experts_moge(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
moe_parallel_config: FusedMoEParallelConfig,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
global_num_experts: int,
expert_map: torch.Tensor = None,
apply_router_weight_on_input: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
w1: Expert weights1 of shape (num_experts, intermediate_size * 2, hidden_size).
w2: Expert weights2 of shape (num_experts, hidden_size, intermediate_size).
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
top_k: Number of experts to select.
expert_map: Expert mapping of shape (num_experts,).
Returns:
hidden_states: Hidden states after routing.
"""
ep_size = moe_parallel_config.ep_size
local_num_experts = global_num_experts // ep_size
local_num_group = top_k // ep_size
if apply_router_weight_on_input:
assert (topk_weights.dim() == 2
), "`topk_weights` should be in shape (num_tokens, topk)"
_, topk = topk_weights.shape
assert (
topk == 1
), "Only support topk=1 when `apply_router_weight_on_input` is True"
hidden_states = hidden_states * topk_weights.to(hidden_states.dtype)
bsz, _ = hidden_states.shape
flatten_topk_ids = topk_ids.view(-1)
sorted_topk_ids = torch.argsort(flatten_topk_ids.float())
sorted_topk_ids = sorted_topk_ids.to(torch.int32)
sorted_hidden_states = hidden_states.index_select(
0, sorted_topk_ids // local_num_group)
experts_id = torch.arange(0,
local_num_experts,
dtype=topk_ids.dtype,
device=topk_ids.device)
num_tokens_per_expert = (flatten_topk_ids.unsqueeze(-1) == experts_id).to(
torch.float32).sum(0)
topk_scales = topk_weights.view(-1).index_select(
0, sorted_topk_ids).unsqueeze(-1)
group_list = num_tokens_per_expert.cumsum(dim=0).to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=group_list,
)[0]
if is_310p():
gate_up_out = torch_npu.npu_swiglu(gate_up_out.to(torch.float32)).to(
torch.float16)
else:
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
gate_up_out *= topk_scales
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=group_list,
)[0]
unsorted_topk_ids = torch.argsort(sorted_topk_ids.float()).to(torch.int32)
unsorted_hidden_states = down_out_list.index_select(0, unsorted_topk_ids)
final_hidden_states = unsorted_hidden_states.reshape(
bsz, top_k // ep_size, -1).sum(1)
return final_hidden_states
def torchair_fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
expert_map: torch.Tensor = None,
apply_router_weight_on_input: bool = False,
max_num_tokens: Optional[int] = None,
) -> torch.Tensor:
"""
Fused experts with top-k routing.
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
w1: Expert weights1 of shape (num_experts, intermediate_size * 2, hidden_size).
w2: Expert weights2 of shape (num_experts, hidden_size, intermediate_size).
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
top_k: Number of experts to select.
expert_map: Expert mapping of shape (num_experts,).
Returns:
hidden_states: Hidden states after routing.
"""
"""
# Check constraints.
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
"""
# if torch.distributed.get_rank() == 0:
# print(w1.shape)
# print(hidden_states.shape)
original_shape = hidden_states.shape
# assert len(original_shape) == 2
num_tokens = hidden_states.shape[:-1].numel()
num_experts = w1.shape[0]
dtype = hidden_states.dtype
device = hidden_states.device
# assert dtype in [torch.float32, torch.float16, torch.bfloat16
# ], "Only float32, float16, and bfloat16 are supported"
if apply_router_weight_on_input:
assert (topk_weights.dim() == 2
), "`topk_weights` should be in shape (num_tokens, topk)"
_, topk = topk_weights.shape
assert (
topk == 1
), "Only support topk=1 when `apply_router_weight_on_input` is True"
hidden_states = hidden_states * topk_weights.to(hidden_states.dtype)
if expert_map is not None:
# Generate token indices and flatten
token_indices = (torch.arange(num_tokens,
device=device,
dtype=torch.int64).unsqueeze(1).expand(
-1, top_k).reshape(-1))
# Flatten token-to-expert mappings and map to local experts
weights_flat = topk_weights.view(-1)
experts_flat = topk_ids.view(-1)
local_experts_flat = expert_map[experts_flat]
# Filter valid token-expert pairs
mask = local_experts_flat != -1
filtered_weights = torch.where(
mask, weights_flat, torch.zeros_like(weights_flat)).to(dtype)
filtered_experts = torch.where(
mask, local_experts_flat,
torch.full_like(local_experts_flat,
num_experts)).to(topk_ids.dtype)
# Sort by local expert IDs
sort_indices = torch.argsort(filtered_experts.view(torch.float32))
sorted_token_indices = token_indices[sort_indices]
sorted_weights = filtered_weights[sort_indices]
# Compute token counts with minlength of num_experts
# This is equivalent to but faster than:
# >>> token_counts = torch.bincount(filtered_experts, minlength=num_experts)[:-1]
token_counts = torch.zeros(num_experts + 1,
device=device,
dtype=torch.int64)
ones = torch.ones_like(filtered_experts, dtype=torch.int64)
token_counts.scatter_add_(0, filtered_experts.to(torch.int64), ones)
token_counts = token_counts[:num_experts]
expert_tokens = torch.cumsum(token_counts, dim=0, dtype=torch.int64)
# Rearrange hidden_states
sorted_hidden_states = hidden_states[sorted_token_indices]
else:
row_idx_len = num_tokens * top_k
row_idx = (torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=device).view(top_k, -1).permute(
1, 0).contiguous())
active_num = max_num_tokens if max_num_tokens is not None else num_tokens
sorted_hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=active_num)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)[0]
gate_up_out = torch_npu.npu_swiglu(gate_up_out_list)
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)[0]
if expert_map is not None:
weighted_down_out = down_out_list * sorted_weights.unsqueeze(1)
final_hidden_states = torch.zeros(*original_shape,
device=hidden_states.device,
dtype=dtype)
# TODO: npu_grouped_matmul output random values at [num_valid_tokens:, ...]
# This created multiple NaN and index_add_ will mix them up which harms accuracy
# remove this mask and filter after it being fixed
num_valid_tokens = mask.sum()
valid_token_mask = torch.arange(
0, sorted_token_indices.shape[0],
device=device).unsqueeze(1) < num_valid_tokens
valid_output = torch.where(
valid_token_mask, weighted_down_out,
torch.zeros_like(weighted_down_out)).to(dtype)
final_hidden_states.index_add_(0, sorted_token_indices, valid_output)
else:
scales = torch.ones_like(
topk_weights) if apply_router_weight_on_input else topk_weights
# TODO: Reorder device memory 2 times here, replace the current
# implementation here when suitable operators become available.
final_hidden_states = torch_npu.npu_moe_finalize_routing(
down_out_list,
skip1=None,
skip2=None,
bias=None,
scales=scales,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
return final_hidden_states
def torchair_native_grouped_topk(
topk_weights: torch.Tensor,
num_expert_group: Optional[int],
topk_group: Optional[int],
):
topk_group = 0 if topk_group is None else topk_group
num_expert_group = 0 if num_expert_group is None else num_expert_group
num_token = topk_weights.shape[0]
grouped_weights = topk_weights.view(num_token, num_expert_group,
-1).max(dim=-1).values
topk_group_indices = torch.topk(grouped_weights.to(torch.float32),
k=topk_group,
dim=-1,
sorted=False)[1]
topk_group_mask = torch.zeros_like(grouped_weights)
topk_group_mask.scatter_(1, topk_group_indices, 1)
topk_weight_mask = (topk_group_mask.unsqueeze(-1).expand(
num_token, num_expert_group,
topk_weights.shape[-1] // num_expert_group).reshape(num_token, -1))
topk_weights = topk_weights.masked_fill(~topk_weight_mask.bool(), 0.0)
return topk_weights
def torchair_select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
global_num_experts: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Select top-k experts based on router logits.
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
router_logits: Router logits of shape (num_tokens, num_experts).
top_k: Number of experts to select.
use_grouped_topk: Whether to group experts before selecting top-k.
renormalize: Whether to renormalize the routing weights.
topk_group: Number of expert groups to select from.
num_expert_group: Number of experts in each group.
custom_routing_function: Custom routing function.
scoring_func: Scoring function to use.
e_score_correction_bias: Correction bias to apply to expert scores.
Returns:
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
Raises:
ValueError: If an unsupported scoring function is provided.
"""
def _renormalize_topk_weights(
topk_weights: torch.Tensor,
renormalize: bool,
):
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1,
keepdim=True)
return topk_weights
if scoring_func == "softmax":
# NOTE: vLLM use dtype=torch.float here
if not use_grouped_topk and custom_routing_function is None:
topk_weights, topk_ids, _ = torch_npu.npu_moe_gating_top_k_softmax(
x=router_logits, finished=None, k=top_k)
topk_ids = topk_ids.to(torch.int32)
topk_weights = _renormalize_topk_weights(topk_weights, renormalize)
return topk_weights, topk_ids
topk_weights = router_logits.softmax(dim=-1)
elif scoring_func == "sigmoid":
topk_weights = router_logits.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_weights = topk_weights
topk_weights = topk_weights + e_score_correction_bias.unsqueeze(0)
# TODO: Change to npu_group_topk when the latest CANN and NNAL is available
# >>> torch_npu._npu_group_topk(topk_weights, group_num=num_expert_group, k=topk_group)
topk_weights = torchair_native_grouped_topk(topk_weights,
num_expert_group,
topk_group)
# TODO bfloat16 is not supported in torch.topk with ge graph.
if e_score_correction_bias is not None:
topk_ids = torch.topk(topk_weights.to(torch.float32),
k=top_k,
dim=-1,
sorted=False)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_weights.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(topk_weights.to(torch.float32),
k=top_k,
dim=-1,
sorted=False)
topk_ids = topk_ids.to(torch.int32)
topk_weights = _renormalize_topk_weights(topk_weights, renormalize)
return topk_weights, topk_ids
if custom_routing_function is not None:
topk_weights, topk_ids = custom_routing_function(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
global_num_experts=global_num_experts)
# Required by npu_moe_init_routing
topk_ids = topk_ids.to(torch.int32)
return topk_weights, topk_ids
topk_weights, topk_ids = topk_weights.topk(top_k, dim=-1)
topk_weights = topk_weights.to(hidden_states.dtype)
# Required by npu_moe_init_routing
topk_ids = topk_ids.to(torch.int32)
topk_weights = _renormalize_topk_weights(topk_weights, renormalize)
return topk_weights, topk_ids
class TorchairAscendUnquantizedFusedMoEMethod(UnquantizedFusedMoEMethod):
def __init__(self, moe: FusedMoEConfig = None):
super().__init__(moe=moe)
vllm_config = get_current_vllm_config()
self.global_batch_size = vllm_config.scheduler_config.max_num_seqs
self.max_model_len = vllm_config.model_config.max_model_len
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
try:
device_group = get_mc2_group().device_group
# TODO: Try local_rank = ep_group.rank_in_group
local_rank = torch.distributed.get_rank(group=device_group)
backend = device_group._get_backend(torch.device("npu"))
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(
local_rank)
except AttributeError:
self.moe_all_to_all_group_name = None
def process_weights_after_loading(self, layer):
super(UnquantizedFusedMoEMethod,
self).process_weights_after_loading(layer)
layer.w13_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w13_weight.data),
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w2_weight.data),
requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
is_prefill: bool = False,
enable_force_load_balance: bool = False,
shared_experts: Optional[Any] = None,
**kwargs,
) -> torch.Tensor:
topk_weights, topk_ids, _ = torch_npu.npu_moe_gating_top_k(
router_logits,
k=top_k, # topk currently is 8
bias=e_score_correction_bias,
k_group=topk_group, # fix: 4
group_count=num_expert_group, # fix 8
group_select_mode=
1, # 0: the maximum in the group; 1: topk2.sum(fix)
renorm=0, # 0: softmax->topk(fix); 1: topk->softmax
norm_type=1, # 0: softmax; 1: sigmoid(fix)
# out_flag=False, # todo new api; should the third output be output
# y2_flag=False, # old api; should the third output be output
routed_scaling_factor=1,
eps=float(1e-20))
topk_weights = topk_weights.to(x.dtype)
# this is a naive implementation for experts load balance so as
# to avoid accumulating too much tokens on a single rank.
# currently it is only activated when doing profile runs.
if enable_force_load_balance:
topk_ids = torch.randint_like(topk_ids, 0, global_num_experts)
fused_moe_state = get_forward_context().fused_moe_state
if self.enable_shared_expert_dp and fused_moe_state == FusedMoEState.MC2:
fused_moe_state = FusedMoEState.All2All
if fused_moe_state == FusedMoEState.MC2:
return torchair_fused_experts_with_mc2(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
moe_parallel_config=self.moe.moe_parallel_config,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map,
moe_all_to_all_group_name=self.moe_all_to_all_group_name,
shared_experts=shared_experts,
is_torchair=self.torchair_graph_enabled,
mc2_mask=kwargs.get("mc2_mask", None))
elif fused_moe_state in [
FusedMoEState.AllGather, FusedMoEState.NaiveMulticast
]:
return torchair_fused_experts(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map)
else:
return torchair_fused_experts_with_all2all(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map,
ep_group=get_ep_group())
class TorchairAscendFusedMoE(FusedMoE):
# The moe_counter parameter is required during the initialization of EPLB
# to identify the current layer index within the MOE model.
moe_counter = -1
def __init__(
self,
num_experts: int, # Global number of experts
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
ep_size: Optional[int] = None,
dp_size: Optional[int] = None,
prefix: str = "",
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
):
# TODO: This could not initialize FusedMoE baseclass,
# fixme and make __init__() of AscendFusedMoE more clear
super().__init__(
num_experts=num_experts,
top_k=top_k,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
params_dtype=params_dtype,
reduce_results=reduce_results,
renormalize=renormalize,
use_grouped_topk=use_grouped_topk,
num_expert_group=num_expert_group,
topk_group=topk_group,
quant_config=quant_config,
tp_size=tp_size,
ep_size=ep_size,
dp_size=dp_size,
prefix=prefix,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
activation=activation,
)
TorchairAscendFusedMoE.moe_counter += 1
self.moe_instance_id = TorchairAscendFusedMoE.moe_counter
self.prefix = prefix
if params_dtype is None:
params_dtype = torch.get_default_dtype()
vllm_config = get_current_vllm_config()
self.moe_parallel_config = FusedMoEParallelConfig.make(
tp_size_=(tp_size if tp_size is not None else
get_tensor_model_parallel_world_size()),
dp_size_=(dp_size
if dp_size is not None else get_dp_group().world_size),
vllm_parallel_config=vllm_config.parallel_config)
self.top_k = top_k
self.num_experts = num_experts
self.global_num_experts = num_experts
assert intermediate_size % self.tp_size == 0
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
self.use_grouped_topk = use_grouped_topk
if self.use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.custom_routing_function = custom_routing_function
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.expert_map = None
self.activation = activation
self.log2phy = None
self.global_redundant_expert_num = 0
is_deepseek_v3_r1 = self.global_num_experts == 256
self.rm_router_logits = get_rm_router_logits_state(
self.moe_parallel_config.ep_size, self.dp_size, is_deepseek_v3_r1)
self.all_reduce_merge = get_all_reduce_merge_state(
self.moe_parallel_config.ep_size, is_deepseek_v3_r1)
ascend_config = get_ascend_config()
self.dynamic_eplb = ascend_config.dynamic_eplb or ascend_config.expert_map_record_path
self.expert_map_path = ascend_config.expert_map_path
self.global_redundant_expert_num = ascend_config.init_redundancy_expert
self.global_num_experts = num_experts + self.global_redundant_expert_num
# static eplb initializing with expert_map_path
if self.expert_map_path and os.path.exists(
self.expert_map_path) and os.access(self.expert_map_path,
os.R_OK):
self.expert_load_balancer = ExpertLoadBalancer(
self.expert_map_path, self.global_num_experts)
self.expert_load_balancer.check_expert_map_tensor()
self.global_redundant_expert_num = (
self.expert_load_balancer.get_global_redundant_expert_num())
try:
self.local_num_experts, self.expert_map = (
self.expert_load_balancer.get_rank_placement_map(
self.moe_instance_id, self.ep_rank))
self.log2phy = self.expert_load_balancer.get_rank_log2phy_map(
self.moe_instance_id, self.ep_rank).npu()
except Exception as e:
logger.warning(
f"Init expert map of mtp/eagle when using sample.{e}")
self.local_num_experts, self.expert_map = determine_default_expert_map(
self.global_num_experts, self.ep_size, self.ep_rank,
self.global_redundant_expert_num)
self.log2phy = determine_default_log2phy_map(
self.global_num_experts, self.ep_size, self.ep_rank).npu()
if self.expert_map is not None and isinstance(
self.expert_map, torch.Tensor):
logger.info_once(
"[EP Rank %s/%s] Expert parallelism is enabled. Local/global"
" number of experts: %s/%s. Experts local to global index map:"
" %s.", self.ep_rank, self.ep_size, self.local_num_experts,
self.global_num_experts,
get_compressed_expert_map(self.expert_map))
else:
# init moe.
self.local_num_experts, self.expert_map = determine_expert_map(
self.ep_size, self.ep_rank, self.global_num_experts)
# dynamic eplb initializing with not expert_map_path
if self.dynamic_eplb:
self.global_redundant_expert_num = ascend_config.init_redundancy_expert
self.local_num_experts, self.expert_map = determine_default_expert_map(
self.global_num_experts, self.ep_size, self.ep_rank,
self.global_redundant_expert_num)
self.log2phy = determine_default_log2phy_map(
self.global_num_experts, self.ep_size, self.ep_rank).npu()
if self.expert_map is not None and isinstance(
self.expert_map, torch.Tensor):
logger.info_once(
"[EP Rank %s/%s] Expert parallelism is enabled. Local/global"
" number of experts: %s/%s. Experts local to global index map:"
" %s.", self.ep_rank, self.ep_size, self.local_num_experts,
self.global_num_experts,
get_compressed_expert_map(self.expert_map))
local_num_experts = (torch.sum(self.expert_map != -1)
if self.expert_map is not None else num_experts)
if self.dynamic_eplb:
self.moe_load = torch.zeros(local_num_experts,
dtype=torch.int64).npu()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
self.multistream_overlap_shared_expert = \
ascend_config.multistream_overlap_shared_expert and \
self.torchair_graph_enabled
self.enable_super_kernel = ascend_config.torchair_graph_config.enable_super_kernel
self.enable_shared_expert_dp = ascend_config.enable_shared_expert_dp
if self.scoring_func != "softmax" and not self.use_grouped_topk:
raise ValueError("Only softmax scoring function is supported for "
"non-grouped topk.")
self.moe = FusedMoEConfig(
num_experts=self.global_num_experts,
experts_per_token=top_k,
hidden_dim=hidden_size,
num_local_experts=self.local_num_experts,
moe_parallel_config=self.moe_parallel_config,
in_dtype=params_dtype,
)
if quant_config is None:
self.quant_method = TorchairAscendUnquantizedFusedMoEMethod(
self.moe)
else:
if quant_config.is_layer_skipped_ascend(
prefix, quant_config.packed_modules_mapping):
self.quant_method = TorchairAscendUnquantizedFusedMoEMethod(
self.moe)
else:
self.quant_method = AscendFusedMoEMethod(
quant_config, prefix, quant_config.packed_modules_mapping)
assert self.quant_method is not None
self.moe_load = None
local_num_experts = (torch.sum(self.expert_map != -1)
if self.expert_map is not None else num_experts)
if self.dynamic_eplb:
self.moe_load = torch.zeros(local_num_experts, dtype=torch.int64)
moe_quant_params = {
"num_experts": local_num_experts,
"hidden_size": hidden_size,
"intermediate_size_per_partition":
self.intermediate_size_per_partition,
"params_dtype": params_dtype,
"weight_loader": self.weight_loader,
}
# need full intermediate size pre-sharding for WNA16 act order
if (self.quant_method.__class__.__name__
in ("GPTQMarlinMoEMethod", "CompressedTensorsWNA16MoEMethod")):
moe_quant_params["intermediate_size_full"] = intermediate_size
self.ep_group = get_ep_group()
# NOTE: self.tp_group is not expert_tp_group
self.tp_group = get_tp_group().device_group
self.quant_method.create_weights(layer=self, **moe_quant_params)
def naive_multicast(self, x: torch.Tensor,
cu_tokens_across_dp_cpu: torch.Tensor):
assert (len(x.shape) == 2)
buffer = torch.empty((cu_tokens_across_dp_cpu[-1], x.size(1)),
device=x.device,
dtype=x.dtype)
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
buffer[start:end, :].copy_(x)
for idx in range(self.dp_size):
start = 0 if idx == 0 else cu_tokens_across_dp_cpu[idx - 1]
end = cu_tokens_across_dp_cpu[idx]
get_dp_group().broadcast(buffer[start:end, :], idx)
return buffer
def forward(self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_prefill: bool,
enable_force_load_balance: bool = False,
top_k: Optional[int] = None,
shared_experts: Optional[Any] = None,
gate=None,
replace_allreduce: bool = False,
_metadata_for_padding: Optional[MetadataForPadding] = None):
assert self.quant_method is not None
if top_k:
real_top_k = top_k
else:
real_top_k = self.top_k
num_tokens, hidden_size = hidden_states.shape
forward_context = get_forward_context()
fused_moe_state = forward_context.fused_moe_state
mc2_mask = forward_context.mc2_mask
if self.enable_shared_expert_dp and fused_moe_state == FusedMoEState.MC2:
fused_moe_state = FusedMoEState.All2All
# For w8a8 dynamic we can do npu_dynamic_quant and gate in parallel.
quantized_x_for_share, dynamic_scale_for_share = None, None
from vllm_npu.torchair.quantization.torchair_w8a8_dynamic import \
TorchairAscendW8A8DynamicFusedMoEMethod
running_in_super_kernel = self.enable_super_kernel and fused_moe_state == FusedMoEState.MC2
if self.multistream_overlap_shared_expert:
with super_kernel(self.prefix,
"stream-fusion=1",
enabled=running_in_super_kernel):
if not self.rm_router_logits:
if self.enable_super_kernel:
router_logits, _ = gate(hidden_states.float())
else:
router_logits, _ = gate(hidden_states)
if hasattr(self.quant_method, "quant_method") and \
isinstance(self.quant_method.quant_method,
TorchairAscendW8A8DynamicFusedMoEMethod
) and fused_moe_state == FusedMoEState.MC2:
with npu_stream_switch("moe_secondary", 0):
quantized_x_for_share, dynamic_scale_for_share = torch_npu.npu_dynamic_quant(
hidden_states)
if shared_experts:
if not self.multistream_overlap_shared_expert or fused_moe_state != FusedMoEState.MC2:
# When all_reduce_merge is in progress, shared_experts does not do all_reduce in mlp, but waits until shared_experts+router_experts are completed before doing all_reduce
shared_hidden_states = shared_experts(hidden_states)
mc2_mask = forward_context.mc2_mask
enable_sp = _metadata_for_padding is not None and _metadata_for_padding.not_dummy_and_is_prefill
tp_size = get_tensor_model_parallel_world_size()
if enable_sp:
tp_rank = get_tensor_model_parallel_rank()
mc2_mask_sp = _metadata_for_padding.mc2_mask if _metadata_for_padding is not None else forward_context.mc2_mask
chunk_mc2_mask = torch.tensor_split(mc2_mask_sp, tp_size, dim=0)
mc2_mask = chunk_mc2_mask[tp_rank]
replace_allreduce = True
if (fused_moe_state not in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
]):
if tp_size > 1:
tp_rank = get_tensor_model_parallel_rank()
chunk_mc2_mask = torch.tensor_split(mc2_mask, tp_size, dim=0)
mc2_mask = chunk_mc2_mask[tp_rank]
if not replace_allreduce:
if fused_moe_state in {FusedMoEState.MC2}:
padding_size = forward_context.padded_num_tokens
else:
# TODO: Determine if we can remove the padding
padding_size = tp_size
if num_tokens < padding_size and not self.enable_shared_expert_dp:
hidden_states = nn.functional.pad(
hidden_states, (0, 0, 0, padding_size - num_tokens))
router_logits = nn.functional.pad(
router_logits, (0, 0, 0, padding_size - num_tokens))
if tp_size > 1:
tp_rank = get_tensor_model_parallel_rank()
if not self.enable_shared_expert_dp:
chunk_hidden_states = torch.tensor_split(hidden_states,
tp_size,
dim=0)
chunk_router_logits = torch.tensor_split(router_logits,
tp_size,
dim=0)
hidden_states = chunk_hidden_states[tp_rank]
router_logits = chunk_router_logits[tp_rank]
if self.dp_size > 1:
if fused_moe_state == FusedMoEState.AllGather:
# NOTE: When in torchair graph, it has been padded in model_runner_v1
if not self.torchair_graph_enabled:
max_tokens_across_dp = forward_context.max_tokens_across_dp
if num_tokens < max_tokens_across_dp:
hidden_states = nn.functional.pad(
hidden_states,
(0, 0, 0, max_tokens_across_dp - num_tokens))
if not self.rm_router_logits:
router_logits = nn.functional.pad(
router_logits,
(0, 0, 0, max_tokens_across_dp - num_tokens))
hidden_states = get_dp_group().all_gather(hidden_states, 0)
if self.rm_router_logits:
router_logits, _ = gate(hidden_states)
else:
router_logits = get_dp_group().all_gather(router_logits, 0)
elif fused_moe_state == FusedMoEState.NaiveMulticast:
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_sp(1)
hidden_states = self.naive_multicast(hidden_states,
cu_tokens_across_dp_cpu)
if self.rm_router_logits:
router_logits, _ = gate(hidden_states)
else:
router_logits = self.naive_multicast(
router_logits, cu_tokens_across_dp_cpu)
# Matrix multiply.
e_hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=real_top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
is_prefill=is_prefill,
enable_force_load_balance=enable_force_load_balance,
log2phy=self.log2phy,
global_redundant_expert_num=self.global_redundant_expert_num,
shared_experts=shared_experts if self.torchair_graph_enabled
and self.multistream_overlap_shared_expert and not is_prefill else
None,
mc2_mask=mc2_mask,
quantized_x_for_share=quantized_x_for_share,
dynamic_scale_for_share=dynamic_scale_for_share,
prefix=self.prefix,
running_in_super_kernel=running_in_super_kernel,
)
if shared_experts:
if isinstance(e_hidden_states,
tuple) and len(e_hidden_states) == 2:
e_hidden_states, shared_hidden_states = e_hidden_states
if isinstance(e_hidden_states, tuple) and len(e_hidden_states) == 4:
e_hidden_states, shared_hidden_states, group_list_type, expert_tokens = e_hidden_states
if self.dynamic_eplb:
self.moe_load += expert_tokens if group_list_type else \
torch.cat([expert_tokens[:1], expert_tokens[1:] - expert_tokens[:-1]])
if shared_experts is None and isinstance(
e_hidden_states, tuple) and len(e_hidden_states) == 3:
e_hidden_states, group_list_type, expert_tokens = e_hidden_states
if self.dynamic_eplb:
self.moe_load += expert_tokens if group_list_type else \
torch.cat([expert_tokens[:1], expert_tokens[1:] - expert_tokens[:-1]])
if (fused_moe_state not in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
] and not replace_allreduce and not self.enable_shared_expert_dp):
if tp_size > 1:
if isinstance(e_hidden_states, tuple):
e_hidden_states = e_hidden_states[0]
dist.all_gather(list(chunk_hidden_states), e_hidden_states,
self.tp_group)
final_hidden_states = torch.cat(chunk_hidden_states, dim=0)
dispose_tensor(e_hidden_states)
else:
final_hidden_states = e_hidden_states
if num_tokens < padding_size:
final_hidden_states = final_hidden_states[:num_tokens]
elif self.dp_size > 1 and not self.enable_shared_expert_dp:
if fused_moe_state == FusedMoEState.NaiveMulticast:
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
final_hidden_states = get_dp_group().all_reduce(
e_hidden_states)
final_hidden_states = final_hidden_states[start:end, :]
dispose_tensor(e_hidden_states)
elif fused_moe_state == FusedMoEState.AllGather:
final_hidden_states = get_dp_group().reduce_scatter(
e_hidden_states, 0)
final_hidden_states = final_hidden_states[:num_tokens]
dispose_tensor(e_hidden_states)
else:
final_hidden_states = e_hidden_states
else:
final_hidden_states = e_hidden_states
if tp_size > 1 and not self.all_reduce_merge and fused_moe_state in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
]:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
if shared_experts:
return final_hidden_states, shared_hidden_states
else:
return final_hidden_states
def update_expert_map(self, new_expert_map):
self.expert_map = new_expert_map
def get_map(self):
return self.expert_map
def get_log2phy_map(self):
return self.log2phy
def clear_moe_load(self):
if self.moe_load is not None:
self.moe_load.zero_()
# ----------------------------------------- TBO-related --------------------------------------------
def _forward_ms_fused_moe_comp(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_prefill: bool,
real_top_k,
enable_force_load_balance: bool = False,
):
hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=real_top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
is_prefill=is_prefill,
enable_force_load_balance=enable_force_load_balance,
)
return hidden_states