Files
vllm-npu-plugin/vllm_npu/patch/worker/patch_deepseek_mtp.py
2026-02-10 23:08:39 +08:00

95 lines
3.4 KiB
Python

from typing import Optional
import torch
import torch.nn as nn
import vllm
from transformers import PretrainedConfig
from vllm.compilation.decorators import support_torch_compile
from vllm.config import VllmConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import ParallelLMHead
from vllm.model_executor.models.deepseek_mtp import (
DeepSeekMTP, DeepSeekMultiTokenPredictorLayer)
from vllm.model_executor.models.deepseek_v2 import DeepseekV2DecoderLayer
from vllm.model_executor.models.utils import maybe_prefix
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_index: int = 0,
) -> torch.Tensor:
assert inputs_embeds is not None
# masking inputs at position 0, as not needed by MTP
# Patch this for aclgraph support, as the original operation introduced d2h sync,
# which breaks aclgraph
inputs_embeds = torch.where(positions.unsqueeze(-1) == 0, 0, inputs_embeds)
inputs_embeds = self.enorm(inputs_embeds)
previous_hidden_states = self.hnorm(previous_hidden_states)
hidden_states = self.eh_proj(
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
hidden_states, residual = self.mtp_block(positions=positions,
hidden_states=hidden_states,
residual=None)
hidden_states = residual + hidden_states
return hidden_states
# Patch this only for aclgraph support, as this is not support in vLLM 0.11.0
@support_torch_compile
class AscendDeepSeekMTP(DeepSeekMTP):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
class SharedHead(nn.Module):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
quant_config: QuantizationConfig = None,
) -> None:
super().__init__()
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "head"),
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.norm(hidden_states)
def predictor_init(self, vllm_config: VllmConfig, prefix: str) -> None:
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = nn.Linear(config.hidden_size * 2,
config.hidden_size,
bias=False)
# We don't need topk_indices_buffer in Ascend
topk_indices_buffer = None
self.shared_head = SharedHead(config=config,
prefix=prefix,
quant_config=quant_config)
self.mtp_block = DeepseekV2DecoderLayer(vllm_config, prefix,
topk_indices_buffer)
DeepSeekMultiTokenPredictorLayer.__init__ = predictor_init
vllm.model_executor.models.deepseek_mtp.DeepSeekMultiTokenPredictorLayer.forward = forward