Files
vllm-npu-plugin/vllm_npu/ops/attention.py
2026-02-10 23:08:39 +08:00

310 lines
13 KiB
Python

# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/kernels/test_moe.py
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple
import torch
from vllm.model_executor.layers.linear import ColumnParallelLinear
# Implementation of vanilla chunked prefill, should be removed after the kernel is ready for
# all the corner case
def vanilla_chunked_prefill(
output: torch.Tensor,
query: torch.Tensor, # (num_tokens, heads, head_size)
key_cache: torch.Tensor, # (num_blocks, block_size, kv_heads, head_size)
value_cache: torch.
Tensor, # (num_blocks, block_size, kv_heads, head_size,)
block_tables: torch.Tensor, # (num_seqs, max_num_blocks_per_seq)
cu_seqlen_q: torch.Tensor, # (num_seqs + 1,)
cu_seqlen_k: torch.Tensor, # (num_seqs + 1,)
max_seqlen_q: int,
max_seqlen_k: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
causal: bool = True,
) -> torch.Tensor:
num_query_heads = query.shape[1]
head_dim = value_cache.shape[3]
num_kv_heads = value_cache.shape[2]
block_size = value_cache.shape[1]
num_batch = cu_seqlen_q.shape[0] - 1
max_num_blocks_per_seq = block_tables.shape[1]
key = key_cache[block_tables].view(num_batch,
max_num_blocks_per_seq * block_size,
num_kv_heads, head_dim)
value = value_cache[block_tables].view(num_batch,
max_num_blocks_per_seq * block_size,
num_kv_heads, head_dim)
key = key[:, :max_seqlen_k, :, :]
value = value[:, :max_seqlen_k, :, :]
seqlen_k = cu_seqlen_k[1:] - cu_seqlen_k[:-1]
seqlen_q = cu_seqlen_q[1:] - cu_seqlen_q[:-1]
seqlen_q = seqlen_q.view(-1, 1)
seqlen_k = seqlen_k.view(-1, 1)
seqlen_diff = seqlen_k - seqlen_q
q_idx_mask = (torch.arange(0, max_seqlen_q,
device="npu").view(1, -1).repeat(num_batch, 1))
k_idx_mask = (torch.arange(0, max_seqlen_k,
device="npu").view(1, -1).repeat(num_batch, 1))
q_mask = q_idx_mask < seqlen_q
k_mask = k_idx_mask < seqlen_k
# calculate idx for causal mask of query [batch, max_seqlen_q]
causal_mask_idx = (q_idx_mask + seqlen_diff)[q_mask]
# generate causal mask [batch, max_seqlen_q, max_seqlen_k]
tril_mask = torch.tril(torch.ones(max_seqlen_k, max_seqlen_k,
device="npu"))
tril_mask[tril_mask == 0] = float("-inf")
tril_mask[tril_mask == 1] = 0
causal_mask = tril_mask[causal_mask_idx]
causal_mask_padding = torch.empty([num_batch, max_seqlen_q, max_seqlen_k],
device="npu").fill_(float("-inf"))
causal_mask_padding[q_mask] = causal_mask
# to [batch, num_heads, max_seqlen_q, max_seqlen_k]
causal_mask_padding = causal_mask_padding.unsqueeze(1)
pad_q = torch.zeros(
[num_batch, max_seqlen_q, num_query_heads, head_dim],
device="npu",
dtype=query.dtype,
)
pad_k = torch.zeros(
[num_batch, max_seqlen_k, num_kv_heads, head_dim],
device="npu",
dtype=key.dtype,
)
pad_v = torch.zeros(
[num_batch, max_seqlen_k, num_kv_heads, head_dim],
device="npu",
dtype=value.dtype,
)
pad_q[q_mask] = query
pad_k[k_mask] = key[k_mask]
pad_v[k_mask] = value[k_mask]
if num_query_heads > num_kv_heads:
pad_k = pad_k.view(
[num_batch, max_seqlen_k, num_kv_heads, 1, head_dim])
pad_k = pad_k.repeat(1, 1, 1, num_query_heads // num_kv_heads, 1).view(
[num_batch, max_seqlen_k, num_query_heads, head_dim])
pad_v = pad_v.view(
[num_batch, max_seqlen_k, num_kv_heads, 1, head_dim])
pad_v = pad_v.repeat(1, 1, 1, num_query_heads // num_kv_heads, 1).view(
[num_batch, max_seqlen_k, num_query_heads, head_dim])
# permute to [b, h, n, k]
pad_q = pad_q.permute(0, 2, 1, 3)
pad_k = pad_k.permute(0, 2, 1, 3)
pad_v = pad_v.permute(0, 2, 1, 3)
attn_mask = torch.empty([num_batch, 1, 1, max_seqlen_k],
device="npu").fill_(float("-inf"))
attn_mask[:, :, :, :max_seqlen_k].masked_fill_(k_mask[:, None, None, :], 0)
# [b, h, f, t]
attn_weights = torch.einsum("bhqd,bhkd->bhqk", pad_q, pad_k)
attn_weights *= scale
attn_mask = attn_mask.float()
attn_weights = attn_weights + attn_mask
if causal:
attn_weights = attn_weights + causal_mask_padding
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_output = torch.einsum("bhqk,bhkd->bhqd", attn_weights, pad_v.float())
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = (attn_output[q_mask].view([-1, num_query_heads,
head_dim]).to(output.dtype))
output.copy_(attn_output)
return attn_output
def vanilla_chunked_prefill_mla(
output: torch.Tensor, # (num_tokens, num_heads, v_head_dim)
query: torch.Tensor, # (num_tokens, num_heads, nope_dim + rope_dim)
kv_cache: Tuple[
torch.Tensor], # [nope, rope] (num_blocks, block_size, latent_kv)
block_tables: torch.Tensor, # (batch_size, max_num_blocks_per_seq)
query_lens: torch.Tensor, # (batch_size)
context_lens: torch.Tensor, # (batch_size)
kv_b_proj: ColumnParallelLinear, # ()
max_query_len: int,
max_context_len: int,
nope_dim: int,
rope_dim: int,
v_head_dim: int,
scale: float,
alibi_slopes: Optional[torch.Tensor],
causal: bool = True) -> None:
batch_size = block_tables.size(0)
assert len(kv_cache) > 1
assert query_lens.size(0) == batch_size
num_heads = query.size(1)
nope_cache = kv_cache[0]
rope_cache = kv_cache[1]
block_size = nope_cache.size(1)
latent_kv_dim = nope_cache.size(-1)
max_num_blocks_per_seq = block_tables.size(1)
batch_size = query_lens.size(0)
nope_cache = nope_cache.squeeze()
# select kv_c out as [batch_size, max_context_len, latent_kv + rope_dim] and get kv_c and k_pe
# cached_kv_c: [batch_size, max_context_len, latent_kv]
# cached_k_pe: [batch_size, max_context_len, rope_dim]
cache_kv_c = nope_cache[block_tables].view(
batch_size, max_num_blocks_per_seq * block_size,
latent_kv_dim)[:, :max_context_len, :]
cache_k_pe = rope_cache[block_tables].view(
batch_size, max_num_blocks_per_seq * block_size,
rope_dim)[:, :max_context_len, :]
# get k_rope and v
# k_nope: [batch_size, max_context_len, num_heads, nope_dim]
# value: [batch_size, max_context_len, num_heads, v_head_dim]
k_nope, value = kv_b_proj(cache_kv_c)[0].view(
batch_size, max_context_len, num_heads,
nope_dim + v_head_dim).split([nope_dim, v_head_dim], dim=-1)
# key: [batch_size, max_context_len, num_hads, rope_dim + nope_dim]
key = torch.cat(
[k_nope, cache_k_pe.unsqueeze(2).expand(-1, -1, num_heads, -1)],
dim=-1)
context_lens = context_lens.view(-1, 1).to("npu")
query_lens = query_lens.view(-1, 1).to("npu")
seq_diff = context_lens - query_lens
q_idx_mask = (torch.arange(0, max_query_len,
device="npu").view(1, -1).repeat(batch_size, 1))
kv_c_idx_mask = (torch.arange(0, max_context_len,
device="npu").view(1,
-1).repeat(batch_size, 1))
kv_c_mask = kv_c_idx_mask < context_lens
q_mask = q_idx_mask < query_lens
# calculate idx for causal mask of query [batch, max_seqlen_q]
causal_mask_idx = (q_idx_mask + seq_diff)[q_mask]
# generate causal mask [batch, max_seqlen_q, max_seqlen_k]
tril_mask = torch.tril(
torch.ones(max_context_len, max_context_len, device="npu"))
tril_mask[tril_mask == 0] = float("-inf")
tril_mask[tril_mask == 1] = 0
causal_mask = tril_mask[causal_mask_idx]
causal_mask_padding = torch.empty(
[batch_size, max_query_len, max_context_len],
device="npu").fill_(float("-inf"))
causal_mask_padding[q_mask] = causal_mask
# to [batch, num_heads, max_seqlen_q, max_seqlen_k]
causal_mask_padding = causal_mask_padding.unsqueeze(1)
pad_q = torch.zeros(
[batch_size, max_query_len, num_heads, rope_dim + nope_dim],
device="npu",
dtype=query.dtype,
)
pad_k = torch.zeros(
[batch_size, max_context_len, num_heads, rope_dim + nope_dim],
device="npu",
dtype=key.dtype,
)
pad_v = torch.zeros(
[batch_size, max_context_len, num_heads, v_head_dim],
device="npu",
dtype=value.dtype,
)
num_query = torch.sum(q_mask).item()
num_add_query = num_query - query.size(0)
# mtp will come in
if num_add_query > 0:
add_query_size = query.size()
add_query_size = list(add_query_size)
add_query_size[0] = num_add_query
pad_tensor = torch.zeros(add_query_size,
dtype=query.dtype,
device=query.device)
query = torch.cat([query, pad_tensor], dim=0)
pad_q[q_mask] = query
pad_k[kv_c_mask] = key[kv_c_mask]
pad_v[kv_c_mask] = value[kv_c_mask]
pad_q = pad_q.permute(0, 2, 1, 3)
pad_k = pad_k.permute(0, 2, 1, 3)
pad_v = pad_v.permute(0, 2, 1, 3)
attn_mask = torch.empty([batch_size, 1, 1, max_context_len],
device="npu").fill_(float("-inf"))
attn_mask[:, :, :, :max_context_len].masked_fill_(
kv_c_mask[:, None, None, :], 0)
# [b, h, f, t]
attn_weights = torch.einsum("bhqd,bhkd->bhqk", pad_q, pad_k)
attn_weights *= scale
attn_mask = attn_mask.float()
attn_weights = attn_weights + attn_mask
if causal:
attn_weights = attn_weights + causal_mask_padding
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_output = torch.einsum("bhqk,bhkd->bhqd", attn_weights, pad_v.float())
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = (attn_output[q_mask].view([-1, num_heads,
v_head_dim]).to(output.dtype))
attn_output = attn_output.view_as(output)
output.copy_(attn_output)
return attn_output
def vanilla_decode_mla(
query: torch.Tensor, # [num_tokens, num_heads, latent_dim + rope_dim]
key_cache: torch.
Tensor, # [num_blocks, block_size, num_kv_heads, latent_dim + rope_dim]
num_kv_heads: int,
num_heads: int,
scale: float,
block_table: torch.Tensor, # [batch_size, max_block_size]
context_lens: List[int],
mla_vhead_size: int,
rope_dim: int,
output: torch.Tensor):
batch_size = block_table.size()[0]
max_block_size = block_table.size()[1]
reduce_dim = key_cache.size()[-1]
block_size = key_cache.size()[1]
latent_dim = reduce_dim - rope_dim
kv_c_and_pe = key_cache[block_table].view(
[batch_size, max_block_size * block_size, num_kv_heads, reduce_dim])
max_context_len = max(context_lens)
context_lens = torch.tensor(context_lens, device="npu").view(batch_size, 1)
# [batch_size, max_context_len, num_kv_heads, latent_dim + rope_dim]
# since the kv head is 1 in deepseek, we use expand here for perf
kv_c_and_pe = kv_c_and_pe[:, :max_context_len, :, :].expand(
-1, -1, num_heads, 1)
kv_c = kv_c_and_pe[..., :latent_dim]
kv_idx_mask = (torch.arange(0, max_context_len,
device="npu").view(1,
-1).repeat(batch_size, 1))
# [batch_size, max_context_len]
kv_idx_mask = kv_idx_mask < context_lens
query = query.unsqueeze(1)
attn_weights = torch.einsum("bqhd,bkhd->bhqk", query, kv_c_and_pe)
attn_weights *= scale
attn_weights = attn_weights + kv_idx_mask[:, -1, -1, :].float()
attn_weights = torch.softmax(attn_weights, dim=-1)
attn_output = torch.einsum("bhqk,bkhd->bqhd", attn_weights,
kv_c.float()).view(-1, num_heads, latent_dim)
output.copy_(attn_output)
return output