Files
vllm-npu-plugin/vllm_npu/lora/utils.py
2026-02-10 23:08:39 +08:00

111 lines
3.7 KiB
Python

from typing import Optional
import vllm
from torch import nn
from transformers import PretrainedConfig
from vllm.config import LoRAConfig
from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
MergedColumnParallelLinearWithLoRA,
MergedQKVParallelLinearWithLoRA,
QKVParallelLinearWithLoRA,
RowParallelLinearWithLoRA,
VocabParallelEmbeddingWithLoRA)
from vllm.lora.layers.utils import _not_fully_sharded_can_replace
from vllm_npu.ops.linear import (AscendColumnParallelLinear,
AscendMergedColumnParallelLinear,
AscendQKVParallelLinear,
AscendRowParallelLinear)
from vllm_npu.ops.vocab_parallel_embedding import \
AscendVocabParallelEmbedding
class AscendColumnParallelLinearWithLoRA(ColumnParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendColumnParallelLinear
class AscendMergedColumnParallelLinearWithLoRA(
MergedColumnParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendMergedColumnParallelLinear
class AscendRowParallelLinearWithLoRA(RowParallelLinearWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendRowParallelLinear
class AscendVocabParallelEmbeddingWithLoRA(VocabParallelEmbeddingWithLoRA):
@classmethod
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return type(source_layer) is AscendVocabParallelEmbedding
class AscendQKVParallelLinearWithLoRA(QKVParallelLinearWithLoRA):
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(cls, source_layer: nn.Module,
lora_config: LoRAConfig, packed_modules_list: list,
model_config: Optional[PretrainedConfig]) -> bool:
return type(source_layer) is AscendQKVParallelLinear and len(
packed_modules_list) == 1
class AscendMergedQKVParallelLinearWithLoRA(MergedQKVParallelLinearWithLoRA):
@classmethod
@_not_fully_sharded_can_replace
def can_replace_layer(
cls,
source_layer: nn.Module,
lora_config: LoRAConfig,
packed_modules_list: list,
model_config: Optional[PretrainedConfig],
) -> bool:
return (type(source_layer) is AscendQKVParallelLinear
and len(packed_modules_list) == 3)
def refresh_all_lora_classes():
vllm.lora.utils._all_lora_classes.add(AscendColumnParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(
AscendMergedColumnParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendRowParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendVocabParallelEmbeddingWithLoRA)
vllm.lora.utils._all_lora_classes.add(AscendQKVParallelLinearWithLoRA)
vllm.lora.utils._all_lora_classes.add(
AscendMergedQKVParallelLinearWithLoRA)