# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Copyright 2023 The vLLM team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from vllm.logger import logger import vllm_npu.envs as envs_ascend from vllm_npu.ascend_config import get_ascend_config from vllm_npu.torchair.torchair_model_runner import NPUTorchairModelRunner from vllm_npu.torchair.utils import (check_kv_cache_bytes_cache_exist, delete_torchair_cache_file, read_kv_cache_bytes_from_file) from vllm_npu.worker.worker_v1 import NPUWorker class NPUTorchairWorker(NPUWorker): """Torchair worker bases on NPUWorker. Only torchair specified code should be added in this class.""" def determine_available_memory(self) -> int: """Override determine_available_memory to use cached torchair kv_cache_bytes.""" available_kv_cache_memory = super().determine_available_memory() ascend_config = get_ascend_config() if ascend_config.enable_shared_expert_dp: return available_kv_cache_memory if ascend_config.torchair_graph_config.use_cached_kv_cache_bytes: if check_kv_cache_bytes_cache_exist(): old_kv_cache_bytes = read_kv_cache_bytes_from_file( torch.distributed.get_rank()) if 0 < old_kv_cache_bytes <= available_kv_cache_memory: logger.info( f"Use cached torchair kv_cache_bytes: {old_kv_cache_bytes}" ) self.model_runner.new_kv_cache_bytes = old_kv_cache_bytes return old_kv_cache_bytes else: logger.info( "Cached torchair kv_cache_bytes is too big, invalidate old torchair_cache" ) delete_torchair_cache_file() bytes_floating_tolerance = 1024 * 1024 * envs_ascend.vllm_npu_KV_CACHE_MEGABYTES_FLOATING_TOLERANCE available_kv_cache_memory -= bytes_floating_tolerance logger.info(f"Use new kv_cache_bytes: {available_kv_cache_memory}") self.model_runner.new_kv_cache_bytes = available_kv_cache_memory return available_kv_cache_memory def init_device(self): """Override init_device to init torchair model runner""" device = self._init_device() # Init ModelRunner here, so that we have access to self.device. self.model_runner = NPUTorchairModelRunner(self.vllm_config, device)