# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # import torch import vllm_npu.ops.common_fused_moe # noqa import vllm_npu.ops.layernorm # noqa import vllm_npu.ops.register_custom_ops # noqa import vllm_npu.ops.vocab_parallel_embedding # noqa from vllm_npu.ops.activation import AscendQuickGELU, AscendSiluAndMul from vllm_npu.ops.rotary_embedding import ( AscendDeepseekScalingRotaryEmbedding, AscendRotaryEmbedding) class dummyFusionOp: default = None def __init__(self, name=""): self.name = name def register_dummy_fusion_op() -> None: torch.ops._C_ascend.rms_norm = dummyFusionOp(name="rms_norm") torch.ops._C_ascend.fused_add_rms_norm = dummyFusionOp( name="fused_add_rms_norm") torch.ops._C_ascend.static_scaled_fp8_quant = dummyFusionOp( name="static_scaled_fp8_quant") torch.ops._C_ascend.dynamic_scaled_fp8_quant = dummyFusionOp( name="dynamic_scaled_fp8_quant") torch.ops._C_ascend.dynamic_per_token_scaled_fp8_quant = dummyFusionOp( name="dynamic_per_token_scaled_fp8_quant") torch.ops._C_ascend.rms_norm_static_fp8_quant = dummyFusionOp( name="rms_norm_static_fp8_quant") torch.ops._C_ascend.fused_add_rms_norm_static_fp8_quant = dummyFusionOp( name="fused_add_rms_norm_static_fp8_quant") torch.ops._C_ascend.rms_norm_dynamic_per_token_quant = dummyFusionOp( name="rms_norm_dynamic_per_token_quant") __all__ = [ "AscendQuickGELU", "AscendSiluAndMul", "AscendRotaryEmbedding", "AscendDeepseekScalingRotaryEmbedding" ]