# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Copyright 2023 The vLLM team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. from __future__ import annotations from abc import ABC, abstractmethod from typing import Any, Dict, Optional import torch from vllm.config import get_current_vllm_config from vllm.forward_context import get_forward_context from vllm.model_executor.layers.fused_moe import FusedMoEConfig from vllm_npu.ascend_forward_context import MoECommType from vllm_npu.ops.moe.fused_moe_prepare_and_finalize import ( FusedMoEPrepareAndFinalizeWithAll2All, FusedMoEPrepareAndFinalizeWithAllGather, FusedMoEPrepareAndFinalizeWithMC2, FusedMoEPrepareAndFinalizeWithNaiveMulticast) from vllm_npu.ops.moe.moe_mlp import unified_apply_mlp from vllm_npu.ops.moe.token_dispatcher import (TokenDispatcherWithAll2AllV, TokenDispatcherWithAllGather, TokenDispatcherWithMC2, TokenDispatcherWithMoge) _MoECommMethods: Dict[Optional[MoECommType], MoECommMethod] = {} def get_moe_comm_method( moe_comm_type: Optional[MoECommType]) -> Optional[MoECommMethod]: return _MoECommMethods.get(moe_comm_type, None) def setup_moe_comm_method(moe_config): _MoECommMethods[MoECommType.ALLTOALL] = AlltoAllCommImpl(moe_config) _MoECommMethods[MoECommType.ALLGATHER] = AllGatherCommImpl(moe_config) _MoECommMethods[MoECommType.MC2] = MC2CommImpl(moe_config) _MoECommMethods[MoECommType.NAIVE_MULTICAST] = NaiveMulticastCommImpl( moe_config) class MoECommMethod(ABC): """Base class for MoE communication methods.""" def __init__(self, moe_config: FusedMoEConfig): self.model_type = get_current_vllm_config( ).model_config.hf_config.model_type self.moe_config = moe_config self.mc2_mask = None self.token_dispatcher = self._get_token_dispatcher() self.fused_moe_prepare_finalize = self._get_fused_moe_prepare_finalize( ) def prepare( self, hidden_states: torch.Tensor, router_logits: torch.Tensor, enable_shared_expert_dp: bool = False, replace_allreduce: bool = False ) -> tuple[torch.Tensor, torch.Tensor]: hidden_states, router_logits, mc2_mask = self.fused_moe_prepare_finalize.prepare( hidden_states, router_logits, enable_shared_expert_dp, replace_allreduce) self.mc2_mask = mc2_mask return hidden_states, router_logits def finalize(self, hidden_states: torch.Tensor, reduce_results: bool) -> torch.Tensor: hidden_states = self.fused_moe_prepare_finalize.finalize( hidden_states, reduce_results) return hidden_states def fused_experts( self, hidden_states: torch.Tensor, w1: torch.Tensor, w2: torch.Tensor, topk_weights: torch.Tensor, topk_ids: torch.Tensor, activation: str = "silu", apply_router_weight_on_input: bool = False, use_int8_w8a8: bool = False, use_int4_w4a8: bool = False, global_num_experts: Optional[int] = None, expert_map: Optional[torch.Tensor] = None, w1_scale: Optional[torch.Tensor] = None, w2_scale: Optional[torch.Tensor] = None, w1_scale_bias: torch.Tensor = None, w2_scale_bias: torch.Tensor = None, # For TorchAir graph is_torchair: bool = False, # For Cube/Vector parallel shared_experts: Optional[Any] = None, quantized_x_for_share: Optional[Any] = None, dynamic_scale_for_share: Optional[Any] = None, # For load balance log2phy: torch.Tensor = None, global_redundant_expert_num: int = 0, need_trans: bool = False, dynamic_eplb: bool = False): # Check constraints assert hidden_states.dtype in [ torch.float32, torch.float16, torch.bfloat16 ] moe_comm_method = get_forward_context().moe_comm_method assert moe_comm_method is not None, "Missing communication context" results = self.token_dispatcher.token_dispatch( hidden_states=hidden_states, topk_weights=topk_weights, topk_ids=topk_ids, expert_map=expert_map, log2phy=log2phy, global_redundant_expert_num=global_redundant_expert_num, shared_experts=shared_experts, quantized_x_for_share=quantized_x_for_share, dynamic_scale_for_share=dynamic_scale_for_share, mc2_mask=self.mc2_mask, apply_router_weight_on_input=apply_router_weight_on_input, with_quant=use_int8_w8a8 or use_int4_w4a8, dynamic_eplb=dynamic_eplb) permuted_hidden_states, expert_tokens, dynamic_scale, group_list_type, topk_scales = \ results["hidden_states"], results["group_list"], results.get("dynamic_scale"), results["group_list_type"], results.get("topk_scales") mlp_output = unified_apply_mlp(hidden_states=permuted_hidden_states, w1=w1, w1_scale=w1_scale, w2=w2, w2_scale=w2_scale, group_list=expert_tokens, dynamic_scale=dynamic_scale, group_list_type=group_list_type, w1_scale_bias=w1_scale_bias, w2_scale_bias=w2_scale_bias, topk_scales=topk_scales, with_quant=use_int8_w8a8 or use_int4_w4a8, fusion=use_int8_w8a8, need_trans=need_trans, dynamic_eplb=dynamic_eplb) final_hidden_states = self.token_dispatcher.token_combine( hidden_states=mlp_output) if dynamic_eplb: return (final_hidden_states, group_list_type, expert_tokens) return final_hidden_states @abstractmethod def _get_token_dispatcher(self): raise NotImplementedError( "_get_token_dispatcher function not implemented.") @abstractmethod def _get_fused_moe_prepare_finalize(self): raise NotImplementedError( "_get_fused_moe_prepare_finalize function not implemented.") class AllGatherCommImpl(MoECommMethod): """This implementation is the same as NativeAllGatherCommImpl, but uses NPU-specific ops for better performance. This implementation should be compatible with all scenarios, and thus it is the default implementation for MoE communication methods. It uses `torch_npu.npu_moe_init_routing_v2` for pre-processing and `torch_npu.npu_moe_token_unpermute` for post-processing to handle the token-to-expert mapping and communication efficiently. NOTE(Yizhou): TBH, it is really weird that we were supposed to use `torch_npu.npu_moe_init_routing_v2` and `torch_npu.npu_moe_finalize_routing` or `torch_npu.npu_moe_token_permute` and `torch_npu.npu_moe_token_unpermute` for pre-processing and post-processing, respectively. But `npu_moe_finalize_routing` will lead to accuracy issues so we have to use `torch_npu.npu_moe_token_unpermute` instead. This is a workaround and should be removed after the issue is fixed. """ def _get_token_dispatcher(self): if self.model_type == "PanguProMoE": return TokenDispatcherWithMoge( top_k=self.moe_config.experts_per_token, num_experts=self.moe_config.num_experts, num_local_experts=self.moe_config.num_local_experts) else: return TokenDispatcherWithAllGather( top_k=self.moe_config.experts_per_token, num_experts=self.moe_config.num_experts, num_local_experts=self.moe_config.num_local_experts) def _get_fused_moe_prepare_finalize(self): return FusedMoEPrepareAndFinalizeWithAllGather(self.moe_config) class MC2CommImpl(MoECommMethod): """This implementation is for the scenarios listed below: 1. `enable_expert_parallel=True`. 2. `npu_moe_distribute_dispatch` and `npu_moe_distribute_combine` are available. 3. `enable_expert_parallel=False` is not supported. This implementation uses the MC2 communication method, which is optimized for Communication and Computation parallelism on Ascend devices. """ def _get_token_dispatcher(self): return TokenDispatcherWithMC2() def _get_fused_moe_prepare_finalize(self): return FusedMoEPrepareAndFinalizeWithMC2(self.moe_config) class AlltoAllCommImpl(MoECommMethod): """This implementation is for the scenarios listed below: 1. `enable_expert_parallel=True`. 2. `npu_grouped_matmul` is available. This implementation uses all-to-all communication to exchange tokens between data parallel ranks before and after the MLP computation. It should have better performance than AllGatherCommImpl when DP size > 1. """ def _get_token_dispatcher(self): return TokenDispatcherWithAll2AllV( top_k=self.moe_config.experts_per_token, num_experts=self.moe_config.num_experts, num_local_experts=self.moe_config.num_local_experts) def _get_fused_moe_prepare_finalize(self): return FusedMoEPrepareAndFinalizeWithAll2All(self.moe_config) class NaiveMulticastCommImpl(MoECommMethod): """This implementation is the same as NativeAllGatherCommImpl, but uses NPU-specific ops for better performance. This implementation should be compatible with all scenarios, and thus it is the default implementation for MoE communication methods. It uses `torch_npu.npu_moe_init_routing_v2` for pre-processing and `torch_npu.npu_moe_token_unpermute` for post-processing to handle the token-to-expert mapping and communication efficiently. NOTE(Yizhou): TBH, it is really weird that we were supposed to use `torch_npu.npu_moe_init_routing_v2` and `torch_npu.npu_moe_finalize_routing` or `torch_npu.npu_moe_token_permute` and `torch_npu.npu_moe_token_unpermute` for pre-processing and post-processing, respectively. But `npu_moe_finalize_routing` will lead to accuracy issues so we have to use `torch_npu.npu_moe_token_unpermute` instead. This is a workaround and should be removed after the issue is fixed. """ def _get_token_dispatcher(self): return TokenDispatcherWithAllGather( top_k=self.moe_config.experts_per_token, num_experts=self.moe_config.num_experts, num_local_experts=self.moe_config.num_local_experts) def _get_fused_moe_prepare_finalize(self): return FusedMoEPrepareAndFinalizeWithNaiveMulticast(self.moe_config)