# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # import torch from vllm.model_executor.layers.activation import QuickGELU, SiluAndMul class AscendQuickGELU(QuickGELU): def forward_oot(self, x: torch.tensor) -> torch.Tensor: import torch_npu out = torch_npu.npu_fast_gelu(x) return out class AscendSiluAndMul(SiluAndMul): def forward_oot(self, x: torch.Tensor) -> torch.Tensor: import torch_npu from vllm_npu.utils import is_310p torch.ops.vllm.maybe_prefetch_mlp_down_proj(x) if is_310p(): out = torch_npu.npu_swiglu(x.to(torch.float32)).to(torch.float16) else: out = torch_npu.npu_swiglu(x) torch.ops.vllm.maybe_wait_prefetch_done(out) return out