# SPDX-License-Identifier: Apache-2.0 from typing import Callable, Optional, Tuple, Union import torch from vllm_npu.utils import is_310p if is_310p(): from vllm.lora.ops.torch_ops import (bgmv_expand, bgmv_expand_slice, bgmv_shrink, sgmv_expand, sgmv_expand_slice, sgmv_shrink) else: from vllm_npu.lora.lora_ops import (bgmv_expand, bgmv_expand_slice, bgmv_shrink, sgmv_expand, sgmv_expand_slice, sgmv_shrink) from vllm.lora.punica_wrapper.punica_base import PunicaWrapperBase from vllm_npu.lora.utils import refresh_all_lora_classes # The platforms that are compatible with the PyTorch-native implementation can # inherit this class class PunicaWrapperNPU(PunicaWrapperBase): """ PunicaWrapperNPU is designed to manage and provide metadata for the punica kernel. The main function is to maintain the state information for Multi-LoRA, and to provide the interface for the pytorch punica ops. """ def __init__(self, max_num_batched_tokens: int, max_batches: int, device: Union[torch.device, str], **kwargs): PunicaWrapperBase.__init__(self, max_num_batched_tokens, max_batches, device) refresh_all_lora_classes() def _shrink_prefill( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, scale: float, ): #No LoRA request, so return directly if self.no_lora: return sgmv_shrink( x, w_t_all, y, *self.prefill_metadata, scale, ) def _shrink_decode( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, scale: float, ): bgmv_shrink(x, w_t_all, y, self.token_lora_indices, scale) def _expand_prefill( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, add_inputs: bool, ): #No LoRA request, so return directly if self.no_lora: return sgmv_expand( x, w_t_all, y, *self.prefill_metadata, add_inputs, ) def _expand_decode( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, add_inputs: bool, ): bgmv_expand(x, w_t_all, y, self.token_lora_indices, add_inputs) def _expand_slice_prefill( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, y_offset: int, y_slice_size: int, add_inputs: bool, ): #No LoRA request, so return directly if self.no_lora: return sgmv_expand_slice( x, w_t_all, y, *self.prefill_metadata, y_offset, y_slice_size, add_inputs, ) def _expand_slice_decode( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, y_offset: int, y_slice_size: int, add_inputs: bool, ): bgmv_expand_slice(x, w_t_all, y, self.token_lora_indices, y_offset, y_slice_size, add_inputs) def _apply_expand( self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, y_offset: int, y_slice_size: int, add_inputs: bool = True, ): """ Perform the ` y[:,y_offset:y_offset+y_slice_size]+=x@w_t_all` computation, which is suitable for the GEMM of lora'b. """ expand_slice_fun: Callable = (self._expand_slice_prefill if self.is_prefill else self._expand_slice_decode) expand_slice_fun(y, x, w_t_all, y_offset, y_slice_size, add_inputs) def _apply_shrink(self, y: torch.Tensor, x: torch.Tensor, w_t_all: torch.Tensor, scale: float): """ Perform the ` y+=x@w_t_all` computation, which is suitable for the GEMM of lora'a. When `is_prefill is` true, it indicates that it is currently the prefill stage, and the `_shrink_prefill` function should be called. Otherwise, it is the decode stage, and the _shrink_decode function should be called. """ y_org = y y = y.view(-1, y.shape[-1]) shrink_fun: Callable = (self._shrink_prefill if self.is_prefill else self._shrink_decode) shrink_fun(y, x, w_t_all, scale) y = y.view_as(y_org) def add_shrink(self, y: Union[Tuple[torch.Tensor, ...], torch.Tensor], x: torch.Tensor, lora_a_stacked: Tuple[torch.Tensor, ...], scale: float, **kwargs): """ Performs GEMM for multiple slices of lora_a. When `is_prefill is` true, it indicates that it is currently the prefill stage, and the `_shrink_prefill` function should be called. Otherwise, it is the decode stage, and the _shrink_decode function should be called. Semantics: for i in range(len(lora_a_stacked)): y[i] += (x @ lora_a_stacked[i]) * scale Args: y (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Output tensors x (torch.Tensor): Input tensor lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weights scale (float): Scaling factor for the operation """ x = x.view(-1, x.shape[-1]) # TODO fuse these kernels for slice_idx in range(len(lora_a_stacked)): self._apply_shrink(y[slice_idx], x, lora_a_stacked[slice_idx], scale) def add_expand(self, y: torch.Tensor, x: Union[Tuple[torch.Tensor, ...], torch.Tensor], lora_b_stacked: Tuple[torch.Tensor, ...], lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], output_slices: Tuple[int, ...], offset_start: int = 0, add_inputs=True, **kwargs) -> None: """ Performs GEMM and bias addition for multiple slices of lora_b. Semantics: for i in range(len(lora_b_stacked)): slice = output_slices[i] y[:, offset:offset+slice] += x[i] @ lora_b_stacked[i] + lora_bias_stacked[i] offset += slice Args: y (torch.Tensor): Output tensor. x (Union[Tuple[torch.Tensor, ...], torch.Tensor]): Input tensors lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): bias's weight output_slices (Tuple[int, ...]): Every slice's size add_inputs (bool): Defaults to True. """ y_org = y y = y.view(-1, y.shape[-1]) offset_left = offset_start if lora_bias_stacked is not None: self._apply_bias(self.token_lora_indices, y, output_slices, lora_bias_stacked) for slice_idx in range(len(lora_b_stacked)): self._apply_expand( y, x[slice_idx], lora_b_stacked[slice_idx], offset_left, output_slices[slice_idx], add_inputs=add_inputs, ) offset_left += output_slices[slice_idx] y = y.view_as(y_org) def add_lora_embedding(self, y: torch.Tensor, x: torch.Tensor, lora_b_stacked: torch.Tensor, add_inputs: bool = True, **kwargs) -> None: """ Applies lora specifically for VocabParallelEmbeddingWithLoRA. Semantics: y += x @ lora_b_stacked Args: y (torch.Tensor): Output tensor. x (torch.Tensor): Input tensor. lora_b_stacked (torch.Tensor): lora_b's weights. add_inputs (bool): Default to True. """ # Embedding layer only need expand op expand_fun: Callable = (self._expand_prefill if self.is_prefill else self._expand_decode) expand_fun(y, x, lora_b_stacked, add_inputs) def add_lora_linear(self, y: torch.Tensor, x: torch.Tensor, lora_a_stacked: Tuple[torch.Tensor, ...], lora_b_stacked: Tuple[torch.Tensor, ...], lora_bias_stacked: Optional[Tuple[torch.Tensor, ...]], scale: float, output_slices: Tuple[int, ...], *, buffer: Optional[Tuple[torch.Tensor, ...]] = None, **kwargs) -> None: """ Applicable to linear-related lora. Semantics: for i in range(len(lora_a_stacked)): y[i] += ( x[i].unsqueeze(0) @ lora_a_stacked[indices[i], layer_idx, :, :] @ lora_b_stacked[indices[i], layer_idx, :, :] * scale ).squeeze(0)+lora_bias_stacked[i] Args: y (torch.Tensor): Output tensor. Will be changed in-place. x (torch.Tensor): Input tensor lora_a_stacked (Tuple[torch.Tensor, ...]): lora_a's weight. lora_b_stacked (Tuple[torch.Tensor, ...]): lora_b's weight. lora_bias_stacked (Optional[Tuple[torch.Tensor, ...]]): lora's bias. scale (float): Scaling factor. output_slices (Tuple[int, ...]): Every slice's size. buffer (Optional[Tuple[torch.Tensor, ...]]): Defaults to None. """ assert len(lora_a_stacked) == len(lora_b_stacked) == len(output_slices) if lora_bias_stacked is not None: assert len(lora_bias_stacked) == len(output_slices) y = self._apply_bias(self.token_lora_indices, y, output_slices, lora_bias_stacked) if buffer is None: r = lora_b_stacked[0].size(-1) # We set the buffer to be float32 by default, consistent with the # triton op buffer = tuple( torch.zeros( (x.size(0), r), dtype=torch.float32, device=x.device) for _ in range(len(output_slices))) self.add_shrink(buffer, x, lora_a_stacked, scale, **kwargs) self.add_expand(y, buffer, lora_b_stacked, None, output_slices, add_inputs=True, **kwargs) def add_lora_logits(self, y: torch.Tensor, x: torch.Tensor, lora_a_stacked: torch.Tensor, lora_b_stacked: torch.Tensor, scale, *, buffer: Optional[torch.Tensor] = None, **kwargs) -> None: """ Applies lora specifically for LogitsProcessorWithLoRA. Semantics: buffer = (x @ lora_a_stacked) * scale y += buffer @ lora_b_stacked Args: y (torch.Tensor): Output tensor. x (torch.Tensor): Input tensor. lora_a_stacked (torch.Tensor): lora_a's weights. lora_b_stacked (torch.Tensor):lora_b's weights. scale (float): Scaling factor. buffer (Optional[torch.Tensor]):Default to None. """ y_org = y y = y.view(-1, y.shape[-1]) x = x.view(-1, x.shape[-1]) r = lora_b_stacked.size(-1) if buffer is None: buffer = torch.zeros((x.size(0), r), dtype=torch.float32, device=x.device) indices = self.sampler_indices bgmv_shrink(x, lora_a_stacked, buffer, indices, scale) bgmv_expand(buffer, lora_b_stacked, y, indices, add_inputs=True) y = y.view_as(y_org)