# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # from dataclasses import dataclass from enum import Enum from typing import ClassVar, List, Optional, Tuple, Type import torch import torch.nn as nn import torch_npu from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl, AttentionLayer, AttentionType) from vllm.config import VllmConfig from vllm.forward_context import ForwardContext, get_forward_context from vllm.utils import cdiv, direct_register_custom_op from vllm.v1.attention.backends.utils import AttentionCGSupport from vllm.v1.core.sched.output import SchedulerOutput from vllm.v1.kv_cache_interface import AttentionSpec from vllm_npu.attention.utils import (AscendCommonAttentionMetadata, maybe_save_kv_layer_to_connector, wait_for_kv_layer_from_connector) from vllm_npu.compilation.acl_graph import (get_graph_params, update_graph_params_workspaces) from vllm_npu.ops.attention import vanilla_chunked_prefill from vllm_npu.utils import (ACL_FORMAT_FRACTAL_NZ, aligned_16, is_310p, nd_to_nz_2d, nd_to_nz_spec) from ..utils import weak_ref_tensors class AscendAttentionBackend(AttentionBackend): accept_output_buffer: bool = True @staticmethod def get_name() -> str: return "ASCEND" @staticmethod def get_impl_cls() -> Type["AscendAttentionBackendImpl"]: return AscendAttentionBackendImpl @staticmethod def get_metadata_cls() -> Type["AscendMetadata"]: return AscendMetadata @staticmethod def get_builder_cls() -> type["AscendAttentionMetadataBuilder"]: return AscendAttentionMetadataBuilder @staticmethod def get_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: if is_310p(): return (2, num_blocks, num_kv_heads * head_size // 16, block_size, 16) return (2, num_blocks, block_size, num_kv_heads, head_size) @staticmethod def get_bsh_kv_cache_shape( num_blocks: int, block_size: int, num_kv_heads: int, head_size: int, ) -> Tuple[int, ...]: return (2, num_blocks, block_size, num_kv_heads * head_size) @staticmethod def swap_blocks( src_kv_cache: List[torch.Tensor], dst_kv_cache: List[torch.Tensor], src_to_dst: torch.Tensor, ) -> None: src_key_cache, src_value_cache = src_kv_cache[0], src_kv_cache[1] dst_key_cache, dst_value_cache = dst_kv_cache[0], dst_kv_cache[1] src_indices = src_to_dst[:, 0] dst_indices = src_to_dst[:, 1] dst_key_cache[dst_indices] = src_key_cache[src_indices].to( dst_key_cache.device) dst_value_cache[dst_indices] = src_value_cache[src_indices].to( dst_key_cache.device) @staticmethod def copy_blocks( kv_caches: List[torch.Tensor], src_to_dists: torch.Tensor, ) -> None: src_indices = src_to_dists[:, 0] dst_indices = src_to_dists[:, 1] for kv_cache in kv_caches: key_caches = kv_cache[0] value_caches = kv_cache[1] key_caches[dst_indices] = key_caches[src_indices] value_caches[dst_indices] = value_caches[src_indices] @staticmethod def get_supported_block_size() -> list[int]: return [128] class AscendAttentionState(Enum): PrefillNoCache = 0 PrefillCacheHit = 1 DecodeOnly = 2 ChunkedPrefill = 3 SpecDecoding = 4 @dataclass class AscendMetadata: # **************************** Basic Properties ************************** # attn_mask: Optional[torch.Tensor] = None # Current state of this attention run. attn_state: AscendAttentionState = AscendAttentionState.ChunkedPrefill # Number of tokens excluding padding. num_actual_tokens: int = 0 # The sequence length per sequence. Sequence length means the computed # tokens + new tokens (is None if it is a decoding). # (batch_size,) # TODO(Angazenn): The following parameters are quite redundant and # contains similar information (such as seq_lens seq_lens_list). We # should simplified these parameters once attention schema in vLLM-Ascend # is unified. seq_lens: torch.Tensor = None seq_lens_list: List[int] = None # type: ignore actual_seq_lengths_q: List[int] = None # type: ignore query_start_loc: torch.Tensor = None query_lens: torch.Tensor = None # Maximum query length in the batch (None for decoding). max_query_len: Optional[int] = None # ********************** KV Cache Related Properties ********************* # # Block addresses per sequence (Seq id -> list of physical block). # (batch_size, max_blocks_per_seq) block_tables: torch.Tensor = None # The indices of the token slots that input tokens will be stored into. # E.g., if `slot_mapping` is [35, 2, 17] and the block size is 16, the # three tokens are stored in the 3rd slot in block 2, 2nd slot in block 0, # and 1st slot in block 1, respectively. # (num_tokens,) slot_mapping: torch.Tensor = None # *************************** Other Properties *************************** # enable_dbo_across_dp: bool = False class AscendAttentionMetadataBuilder: # Does this backend/builder support ACL Graphs for attention (default: no). aclgraph_support: ClassVar[AttentionCGSupport] = \ AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE # Does this backend/builder reorder the batch? # If not, set this to None. Otherwise set it to the query # length that will be pulled into the front of the batch. reorder_batch_threshold: ClassVar[int] = 1 def __init__( self, kv_cache_spec: AttentionSpec, layer_names: list[str], vllm_config: VllmConfig, device: torch.device, ): self.vllm_config = vllm_config self.model_config = vllm_config.model_config self.device = device self.max_num_blocks_per_req = cdiv( self.model_config.max_model_len, AscendAttentionBackend.get_supported_block_size()[0]) self.speculative_config = vllm_config.speculative_config self.decode_threshold = 1 if self.speculative_config: spec_token_num = self.speculative_config.num_speculative_tokens self.decode_threshold += spec_token_num assert self.decode_threshold <= 16, f"decode_threshold exceeded \ npu_fused_infer_attention_score TND layout's limit of 16, \ got {self.decode_threshold}" def reorder_batch(self, input_batch, scheduler_output: "SchedulerOutput") -> bool: return False def build( self, common_prefix_len: int, common_attn_metadata: AscendCommonAttentionMetadata, model: Optional[nn.Module] = None, ): num_reqs = common_attn_metadata.num_reqs num_actual_tokens = common_attn_metadata.num_actual_tokens query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[: num_reqs + 1] block_table = common_attn_metadata.block_table_tensor query_lens = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1] seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs] slot_mapping = common_attn_metadata.slot_mapping[:num_actual_tokens] attn_mask = common_attn_metadata.attn_mask attn_state = common_attn_metadata.attn_state query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[: num_reqs + 1] if attn_state == AscendAttentionState.DecodeOnly and \ common_attn_metadata.num_input_tokens > num_actual_tokens: padded_num_tokens = common_attn_metadata.num_input_tokens - num_actual_tokens seq_lens = torch.cat([ seq_lens, torch.ones(padded_num_tokens, dtype=seq_lens.dtype, device=seq_lens.device) ]) block_table_padding = torch.zeros( (padded_num_tokens, ) + block_table.shape[1:], dtype=block_table.dtype, device=block_table.device) block_table = torch.cat([block_table, block_table_padding], dim=0) query_start_loc_cpu = torch.cat([ query_start_loc_cpu, torch.arange(query_start_loc_cpu[-1] + 1, query_start_loc_cpu[-1] + padded_num_tokens, dtype=query_start_loc_cpu.dtype, device=query_start_loc_cpu.device) ]) query_start_loc = query_start_loc_cpu.to(self.device, non_blocking=True) if is_310p(): if attn_state == AscendAttentionState.PrefillNoCache: mask_nz = nd_to_nz_2d(attn_mask) attn_mask = torch_npu.npu_format_cast(mask_nz.contiguous(), ACL_FORMAT_FRACTAL_NZ) elif attn_state == AscendAttentionState.ChunkedPrefill: mask_nz = nd_to_nz_spec(attn_mask) attn_mask = torch_npu.npu_format_cast(mask_nz.contiguous(), ACL_FORMAT_FRACTAL_NZ) attn_metadata = AscendMetadata( num_actual_tokens=num_actual_tokens, block_tables=block_table, query_start_loc=query_start_loc, query_lens=query_lens, seq_lens=seq_lens, seq_lens_list=seq_lens.tolist(), max_query_len=common_attn_metadata.max_query_len, actual_seq_lengths_q=query_start_loc_cpu[1:].tolist(), slot_mapping=slot_mapping, attn_mask=attn_mask, attn_state=attn_state, enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp) return attn_metadata def build_for_graph_capture( self, common_attn_metadata: AscendCommonAttentionMetadata, attn_state: AscendAttentionState = AscendAttentionState.DecodeOnly, model: Optional[nn.Module] = None, ): if attn_state == AscendAttentionState.DecodeOnly: attn_metadata = self.build( common_prefix_len=0, common_attn_metadata=common_attn_metadata, ) else: raise NotImplementedError( "Currently we only support building dummy metadata for DecodeOnly state" ) attn_metadata.attn_state = attn_state return attn_metadata class AscendAttentionBackendImpl(AttentionImpl): def __init__( self, num_heads: int, head_size: int, scale: float, num_kv_heads: int, alibi_slopes: Optional[List[float]], sliding_window: Optional[int], kv_cache_dtype: str, logits_soft_cap: Optional[float], attn_type: str, kv_sharing_target_layer_name: Optional[str], **kwargs, ) -> None: self.num_heads = num_heads self.head_size = head_size self.scale = float(scale) self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads self.hidden_size = self.num_heads * self.head_size self.kv_cache_dtype = kv_cache_dtype self.sliding_window = sliding_window if alibi_slopes is not None: alibi_slopes = torch.tensor(alibi_slopes, dtype=torch.float32, device="npu") self.alibi_slopes = alibi_slopes self.attn_type = attn_type assert self.num_heads % self.num_kv_heads == 0 self.num_queries_per_kv = self.num_heads // self.num_kv_heads self.key_cache = None self.value_cache = None def _forward_prefill_no_cache( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn_metadata: AscendMetadata, output: Optional[torch.Tensor] = None, num_tokens=0, ) -> torch.Tensor: assert attn_metadata is not None assert attn_metadata.attn_mask is not None mask = attn_metadata.attn_mask if is_310p(): # align q k v output tensors query = aligned_16(query) key = aligned_16(key) value = aligned_16(value) output = aligned_16(output) # do reformat in case of broadcasted tensors mask = mask.repeat(attn_metadata.seq_lens.size(0), 1, 1, 1) mask = torch_npu.npu_format_cast(mask.contiguous(), ACL_FORMAT_FRACTAL_NZ) torch_npu._npu_flash_attention(query=query, key=key, value=value, mask=mask, seq_len=attn_metadata.seq_lens, scale_value=self.scale, num_heads=self.num_heads, num_kv_heads=self.num_kv_heads, out=output) assert output is not None return output[:num_tokens, :, :] def _forward_prefill_cache_hit( self, query: torch.Tensor, attn_metadata: AscendMetadata, output: Optional[torch.Tensor] = None, ) -> torch.Tensor: assert attn_metadata is not None assert attn_metadata.attn_mask is not None compress_mask = attn_metadata.attn_mask batch_size = attn_metadata.query_lens.shape[0] block_table = attn_metadata.block_tables[:batch_size, :] torch_npu._npu_flash_attention_qlens( query=query, key_cache=self.key_cache, value_cache=self.value_cache, block_table=block_table, mask=compress_mask, seq_len=attn_metadata.query_lens, context_lens=attn_metadata.seq_lens, num_kv_heads=self.num_kv_heads, num_heads=self.num_heads, scale_value=self.scale, out=output) return output def _forward_decode_only( self, query: torch.Tensor, attn_metadata: AscendMetadata, output: Optional[torch.Tensor] = None, ) -> torch.Tensor: if is_310p(): # seq_lens_tensor needs to be transferred to the device for 310P. attn_metadata.seq_lens = \ attn_metadata.seq_lens.to(device=query.device) if self.sliding_window is not None and attn_metadata.seq_lens.shape[ 0] == query.size(0): batch_size = attn_metadata.seq_lens.shape[0] block_size = 128 query = query.view(batch_size, 1, self.num_heads * self.head_size) key = self.key_cache value = self.value_cache if self.key_cache is not None and self.value_cache is not None: block_size = self.key_cache.shape[1] key = self.key_cache.flatten(2, 3).contiguous() value = self.value_cache.flatten(2, 3).contiguous() output, _ = torch_npu.npu_fused_infer_attention_score( query, key, value, num_heads=self.num_heads, num_key_value_heads=self.num_kv_heads, input_layout="BSH", block_size=block_size, pre_tokens=self.sliding_window, scale=self.scale, block_table=attn_metadata.block_tables, actual_seq_lengths=[1] * len(attn_metadata.seq_lens), actual_seq_lengths_kv=attn_metadata.seq_lens) output = output.view(batch_size, self.num_heads, self.head_size) else: graph_params = get_graph_params() forward_context: ForwardContext = get_forward_context() num_tokens = query.shape[0] if forward_context.capturing: # Get workspace from cache or calculate it if not present. workspace = graph_params.workspaces.get(num_tokens) if workspace is None: workspace = torch_npu._npu_paged_attention_get_workspace( query=query, key_cache=self.key_cache, value_cache=self.value_cache, num_kv_heads=self.num_kv_heads, num_heads=self.num_heads, scale_value=self.scale, block_table=attn_metadata.block_tables, context_lens=attn_metadata.seq_lens, out=output) update_graph_params_workspaces(num_tokens, weak_ref_tensors(workspace)) # Handle graph capturing mode stream = torch_npu.npu.current_stream() event = torch.npu.ExternalEvent() event.wait(stream) event.reset(stream) graph_params.events[num_tokens].append(event) graph_params.attn_params[num_tokens].append(( weak_ref_tensors(query), weak_ref_tensors(self.key_cache), weak_ref_tensors(self.value_cache), self.num_kv_heads, self.num_heads, self.scale, attn_metadata.block_tables, attn_metadata.seq_lens, weak_ref_tensors(output), )) torch.npu.graph_task_group_begin(stream) torch_npu._npu_paged_attention( query=query, key_cache=self.key_cache, value_cache=self.value_cache, num_kv_heads=self.num_kv_heads, num_heads=self.num_heads, scale_value=self.scale, block_table=attn_metadata.block_tables, context_lens=attn_metadata.seq_lens, out=output, workspace=workspace) handle = torch.npu.graph_task_group_end(stream) graph_params.handles[num_tokens].append(handle) else: torch_npu._npu_paged_attention( query=query, key_cache=self.key_cache, value_cache=self.value_cache, num_kv_heads=self.num_kv_heads, num_heads=self.num_heads, scale_value=self.scale, block_table=attn_metadata.block_tables, context_lens=attn_metadata.seq_lens, out=output) return output def _forward_v1_style( self, query: torch.Tensor, attn_metadata: AscendMetadata, output: Optional[torch.Tensor] = None, ) -> torch.Tensor: # Use chunked prefill for head size 192 scenario, like deepseek # paged_attention_splitfuse maybe crash at such scenario. # TODO: vanilla path will be removed after the kernel support # head_size 192 scenario. if self.head_size == 192: cu_seqlen_q = [0] + attn_metadata.query_lens.tolist() cu_seqlen_k = [0] + attn_metadata.seq_lens.tolist() cu_seqlen_q = torch.tensor(cu_seqlen_q, device=query.device) cu_seqlen_k = torch.tensor(cu_seqlen_k, device=query.device) cu_seqlen_q = torch.cumsum(cu_seqlen_q, dim=0) cu_seqlen_k = torch.cumsum(cu_seqlen_k, dim=0) max_seqlen_q = torch.max(attn_metadata.query_lens) max_seqlen_k = torch.max(attn_metadata.seq_lens) vanilla_chunked_prefill(output, query, self.key_cache, self.value_cache, attn_metadata.block_tables, cu_seqlen_q, cu_seqlen_k, max_seqlen_q, max_seqlen_k, self.scale, None, True) return output # Use paged attention. assert attn_metadata is not None assert attn_metadata.attn_mask is not None if is_310p(): # Do reformat in case of broadcasted tensors. attn_metadata.attn_mask = \ torch_npu.npu_format_cast(attn_metadata.attn_mask.contiguous(), ACL_FORMAT_FRACTAL_NZ) attn_metadata.seq_lens = \ attn_metadata.seq_lens.to(device=query.device) # TODO:The npu_fused_infer_attention_score op is planned to # be utilized in a wider range in upcoming versions. num_block, block_size, _, _ = self.key_cache.shape # type: ignore key = self.key_cache.view( # type: ignore num_block, block_size, -1) value = self.value_cache.view( # type: ignore num_block, block_size, -1) output, _ = torch_npu.npu_fused_infer_attention_score( query=query, key=key, value=value, atten_mask=attn_metadata.attn_mask, block_table=attn_metadata.block_tables, input_layout="TND", block_size=block_size, actual_seq_lengths=attn_metadata.actual_seq_lengths_q, actual_seq_lengths_kv=attn_metadata.seq_lens_list, num_key_value_heads=self.num_kv_heads, num_heads=self.num_heads, scale=self.scale, sparse_mode=3, ) return output def forward( self, layer: AttentionLayer, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, kv_cache: Tuple[torch.Tensor], attn_metadata: AscendMetadata, output: Optional[torch.Tensor] = None, trace_flag: bool = True, ) -> torch.Tensor: """Forward pass with Ascend attention. Args: query: shape = [batch_size, seq_len, num_heads * head_size] key: shape = [batch_size, seq_len, num_kv_heads * head_size] value: shape = [batch_size, seq_len, num_kv_heads * head_size] kv_cache: shape = [key_cache, value_cache] key_cache = [num_blocks, block_size, num_kv_heads, head_size] value_cache = [num_blocks, block_size, num_kv_heads, head_size] attn_metadata: Metadata for attention. Returns: shape = [batch_size * seq_len, num_heads, head_size] """ num_tokens = query.shape[0] use_kv_cache_int8 = len( kv_cache) > 0 and kv_cache[0].dtype == torch.int8 if output is None: output = torch.empty(num_tokens, self.num_heads, self.head_size, dtype=query.dtype, device=query.device) ori_output = output if trace_flag: torch.ops.vllm.unified_ascend_attention_with_output( query=query, key=key, value=value, output=output, layer_name=layer.layer_name) elif hasattr(layer, 'quant_method') and use_kv_cache_int8: output = layer.quant_method.apply(layer, query, key, value, kv_cache, attn_metadata, self.attn_type, self.scale, output) else: if attn_metadata is None: return output.view(num_tokens, self.hidden_size).fill_(0) num_actual_tokens = attn_metadata.num_actual_tokens assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0 attn_type = self.attn_type if attn_type != AttentionType.DECODER and attn_type != AttentionType.ENCODER_ONLY: raise NotImplementedError("Encoder/decoder cross-attention " "are not implemented for " "PallasAttentionBackendImpl") # View q k v to BSH. query = query.view(-1, self.num_heads, self.head_size) key = key.view(-1, self.num_kv_heads, self.head_size) value = value.view(-1, self.num_kv_heads, self.head_size) # TODO: Remove this contiguous in the future. value = value.contiguous() if len(kv_cache) > 1: if self.key_cache is None: self.key_cache, self.value_cache = kv_cache[0], kv_cache[1] slots = attn_metadata.slot_mapping torch_npu._npu_reshape_and_cache( key=key[:num_actual_tokens], value=value[:num_actual_tokens], key_cache=self.key_cache, value_cache=self.value_cache, slot_indices=slots) if attn_type == AttentionType.ENCODER_ONLY: cum_seq_len = attn_metadata.query_start_loc[1:].tolist() attn_out = torch_npu.npu_fusion_attention( query, key, value, head_num=self.num_heads, input_layout="TND", scale=self.scale, sparse_mode=4, atten_mask=attn_metadata.attn_mask, pre_tockens=attn_metadata.max_query_len, next_tockens=attn_metadata.max_query_len, actual_seq_qlen=cum_seq_len, actual_seq_kvlen=cum_seq_len, ) output = attn_out[0] # V0-Style scheduler situation. elif attn_metadata.attn_state == AscendAttentionState.PrefillNoCache: output = self._forward_prefill_no_cache( query, key, value, attn_metadata, output, num_tokens) elif attn_metadata.attn_state == \ AscendAttentionState.PrefillCacheHit: output = self._forward_prefill_cache_hit( query, attn_metadata, output) elif attn_metadata.attn_state == AscendAttentionState.DecodeOnly: output = self._forward_decode_only(query, attn_metadata, output) # Normal V1 situation. else: # npu_fused_infer_attention_score does not support cases # where query.shape[0] != attn_metadata.query_start_loc[-1]. # Thus we need unpad it here. num_tokens = attn_metadata.query_start_loc[-1] query = query[:num_tokens] output = self._forward_v1_style(query, attn_metadata, output) # to make in-place change to the output tensor if hasattr(layer, 'quant_method') and use_kv_cache_int8: output = output.view(num_tokens, self.num_heads, self.head_size) ori_output[:num_tokens, :, :] = output[:num_tokens, :, :] return output.view(num_tokens, self.hidden_size) def unified_ascend_attention_with_output( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, output: torch.Tensor, layer_name: str, ) -> None: wait_for_kv_layer_from_connector(layer_name) forward_context: ForwardContext = get_forward_context() attn_metadata = forward_context.attn_metadata if isinstance(attn_metadata, dict): attn_metadata = attn_metadata[layer_name] self = forward_context.no_compile_layers[layer_name] kv_cache = self.kv_cache[forward_context.virtual_engine] self.impl.forward(self, query, key, value, kv_cache, attn_metadata, output, trace_flag=False) maybe_save_kv_layer_to_connector(layer_name, kv_cache) return def unified_attention_with_output_fake( query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, output: torch.Tensor, layer_name: str, ) -> None: return direct_register_custom_op( op_name="unified_ascend_attention_with_output", op_func=unified_ascend_attention_with_output, mutates_args=["output"], fake_impl=unified_attention_with_output_fake, dispatch_key="PrivateUse1", )