# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Copyright 2023 The vLLM team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # Adapted from vllm-project/vllm/vllm/worker/worker.py # import atexit import functools import math import os from contextlib import contextmanager, nullcontext from enum import Enum from threading import Lock from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union import torch import torch_npu # noqa: F401 from packaging.version import InvalidVersion, Version from torch_npu.npu.streams import Event from vllm.logger import logger import vllm_npu.envs as envs_ascend from vllm_npu.ascend_config import get_ascend_config if TYPE_CHECKING: from vllm.config import VllmConfig else: VllmConfig = None ASCEND_QUANTIZATION_METHOD = "ascend" SOC_VERSION_INFERENCE_SERIES = ["Ascend310P3"] REGISTERED_ASCEND_OPS = {} ACL_FORMAT_FRACTAL_ND = 2 ACL_FORMAT_FRACTAL_NZ = 29 # Pre-check for vllm_npu_C at module load time so that torch.compile/dynamo # never encounters a failing import during tracing. try: import vllm_npu.vllm_npu_C # type: ignore # noqa: F401 import vllm_npu.meta_registration # type: ignore # noqa: F401 _CUSTOM_OP_ENABLED = True except (ImportError, ModuleNotFoundError): _CUSTOM_OP_ENABLED = False _IS_310P = None _SLEEP_MODE_ENABLED = None _CURRENT_STREAM = None _PREFETCH_STREAM = None _SHARED_EXPERTS_COMPUTE_STREAM = None _ASCEND_CUSTOMOP_IS_REIGISTERED = False _DEFAULT_BUFFER_SIZE = 200 _MIN_DP_BUFFER_SIZE = 50 _IS_MOE_MODEL = None _IS_VL_MODEL = None _ENABLE_SP = None _HAS_LAYER_IDX = None _ENABLE_NZ = None _IS_EAGLE_MODE = None def is_310p(): global _IS_310P if _IS_310P is None: # Check if SOC version is already known from init_ascend_soc_version() if _ascend_soc_version is not None: _IS_310P = False # 310P is not A2 or A3 else: # Avoid calling torch_npu.npu.get_soc_version() here as it # triggers NPU lazy init which breaks forked subprocesses. # Default to False; will be updated after init_device(). _IS_310P = False return _IS_310P def is_enable_nz(dtype: Optional[torch.dtype] = torch.int8, vllm_config: Optional[VllmConfig] = None) -> bool: global _ENABLE_NZ, _IS_EAGLE_MODE if _ENABLE_NZ is None: if not vllm_config: raise ValueError( "vllm_config must be provided when _ENABLE_NZ is None") _ENABLE_NZ = envs_ascend.vllm_npu_ENABLE_NZ and vllm_config.model_config.hf_config.model_type != "qwen3_next" _IS_EAGLE_MODE = (vllm_config.speculative_config is not None and getattr(vllm_config.speculative_config, 'method', None) in ("eagle", "eagle3")) if dtype in [torch.float16, torch.bfloat16, torch.float32]: return _ENABLE_NZ if _IS_EAGLE_MODE else False return _ENABLE_NZ def sleep_mode_enabled(): global _SLEEP_MODE_ENABLED if _SLEEP_MODE_ENABLED is None: # _build_info is a C++ build artifact from vllm-ascend CMake. # For the plugin, detect at runtime or default to False. try: from vllm_npu import _build_info # type: ignore _SLEEP_MODE_ENABLED = _build_info.__sleep_mode_enabled__ except ImportError: _SLEEP_MODE_ENABLED = False return _SLEEP_MODE_ENABLED def _round_up(x: int, align: int): # round up x to align, for example, if align is 16, x will be rounded up to 16, 32, 48, etc. # input: 15, 16 -> output: 16 # input: 17, 16 -> output: 32 # input: 30, 16 -> output: 32 # input: 33, 16 -> output: 48 # ... return (x + align - 1) // align * align def _custom_pad(x, pad_dims): # pad the input tensor to the shape of pad_dims # input: (13, 30), pad_dims: [0, 2, 0, 3] # output: (16, 32) return torch.nn.functional.pad(x, pad_dims) def _custom_reshape(x, target_shape): # reshape the input tensor to the shape of target_shape # input: (16, 32), target_shape: [1, 16, 2, 16] # output: (1, 16, 2, 16) return x.reshape(target_shape) def _custom_transpose(x, dim1, dim2): # transpose the input tensor # input: (1, 16, 2, 16), dim1: 1, dim2: 2 # output: (1, 2, 16, 16) return x.transpose(dim1, dim2) def nd_to_nz_2d(in_tensor: torch.Tensor) -> torch.Tensor: # in_tensor: (13, 30) aux_dims = [1, 0, 0, 16] # aux_dims[1]: 16 aux_dims[1] = _round_up(in_tensor.size(0), 16) # aux_dims[2]: 2 aux_dims[2] = _round_up(in_tensor.size(1), 16) // 16 # after: aux_dims: [1, 16, 2, 16] pad_dims = [0, 0, 0, 0] # pad_dims[1]: 2 pad_dims[1] = _round_up(in_tensor.size(1), 16) - in_tensor.size(1) # pad_dims[3]: 3 pad_dims[3] = _round_up(in_tensor.size(0), 16) - in_tensor.size(0) # after: pad_dims: [0, 2, 0, 3] # return: (1, 2, 16, 16) return _custom_transpose( _custom_reshape(_custom_pad(in_tensor, pad_dims), aux_dims), 1, 2).contiguous() def nd_to_nz_spec(mask_tensor: torch.Tensor) -> torch.Tensor: num_tokens = mask_tensor.shape[0] max_seq_len = mask_tensor.shape[1] tokens_pad = (num_tokens + 15) // 16 * 16 max_seq_len_pad = (max_seq_len + 15) // 16 * 16 mask_tensor_pad = \ torch.zeros((1, tokens_pad, max_seq_len_pad), dtype=mask_tensor.dtype, device=mask_tensor.device) mask_tensor_pad[0][:num_tokens, :max_seq_len] = mask_tensor mask = mask_tensor_pad.reshape( (1, tokens_pad, max_seq_len_pad // 16, 16)).permute(0, 2, 1, 3) return mask def aligned_16(tensor: torch.Tensor): """Aligned tensor for 310P""" # Get the size of the current 0th dimension n = tensor.size(0) # Calculate the aligned size n_aligned = ((n + 15) // 16) * 16 # If already aligned, return the original tensor if n == n_aligned: return tensor # Create a new tensor with shape (n_aligned, H, W) and fill it with zeros new_tensor = torch.zeros(n_aligned, *tensor.shape[1:], dtype=tensor.dtype, device=tensor.device) # Copy the original tensor to the first N positions of the new tensor new_tensor[:n] = tensor return new_tensor def try_register_lib(lib_name: str, lib_info: str = ""): import importlib import importlib.util try: module_spec = importlib.util.find_spec(lib_name) if module_spec is not None: importlib.import_module(lib_name) if lib_info: logger.info(lib_info) except Exception: pass def enable_custom_op(): """ Check if vllm_npu_C custom ops are available. The import check is done at module load time to avoid torch.compile/dynamo tracing failures. """ return _CUSTOM_OP_ENABLED def find_hccl_library() -> str: """ We either use the library file specified by the `HCCL_SO_PATH` environment variable, or we find the library file brought by PyTorch. After importing `torch`, `libhccl.so` can be found by `ctypes` automatically. """ so_file = envs_ascend.HCCL_SO_PATH # manually load the hccl library if so_file: logger.info("Found hccl from environment variable HCCL_SO_PATH=%s", so_file) else: if torch.version.cann is not None: so_file = "libhccl.so" else: raise ValueError("HCCL only supports Ascend NPU backends.") logger.info("Found hccl from library %s", so_file) return so_file def current_stream() -> torch.npu.Stream: """ replace `torch.npu.current_stream()` with `vllm.utils.current_stream()`. it turns out that `torch.npu.current_stream()` is quite expensive, as it will construct a new stream object at each call. here we patch `torch.npu.set_stream` to keep track of the current stream directly, so that we can avoid calling `torch.npu.current_stream()`. """ global _CURRENT_STREAM if _CURRENT_STREAM is None: # when this function is called before any stream is set, # we return the default stream. _CURRENT_STREAM = torch.npu.current_stream() return _CURRENT_STREAM def prefetch_stream() -> torch.npu.Stream: global _PREFETCH_STREAM if _PREFETCH_STREAM is None: # when this function is called before any stream is set, # we return the default stream. _PREFETCH_STREAM = torch_npu.npu.Stream() return _PREFETCH_STREAM def shared_experts_compute_stream() -> torch.npu.Stream: global _SHARED_EXPERTS_COMPUTE_STREAM if _SHARED_EXPERTS_COMPUTE_STREAM is None: # when this function is called before any stream is set, # we return the default stream. _SHARED_EXPERTS_COMPUTE_STREAM = torch_npu.npu.Stream() return _SHARED_EXPERTS_COMPUTE_STREAM def adapt_patch(is_global_patch: bool = False): if is_global_patch: from vllm_npu.patch import platform # noqa: F401 else: from vllm_npu.patch import worker # noqa: F401 @functools.cache def vllm_version_is(target_vllm_version: str): if envs_ascend.VLLM_VERSION is not None: vllm_version = envs_ascend.VLLM_VERSION else: import vllm vllm_version = vllm.__version__ try: return Version(vllm_version) == Version(target_vllm_version) except InvalidVersion: # Dev versions like "0.1.dev9973+g..." are not PEP 440 compliant. # For the plugin, default to True for "0.11.0" since the user's # branch is based on vllm 0.11.0. import logging logging.getLogger(__name__).warning( f"Cannot parse vllm version '{vllm_version}'. " f"Assuming compatibility with {target_vllm_version}. " "Set VLLM_VERSION env var to override (format: x.y.z).") return True def get_max_hidden_layers(hf_config) -> int: cfg_dict = hf_config.to_dict() layer_counts = [] def _rec_find(d): if isinstance(d, dict): for k, v in d.items(): if k == "num_hidden_layers" and isinstance(v, int): layer_counts.append(v) else: _rec_find(v) _rec_find(cfg_dict) if not layer_counts: raise ValueError("Not found num_hidden_layers in model config.") return max(layer_counts) def _is_default_capture_sizes(vllm_config: VllmConfig) -> bool: """ Check whether it is vLLM default capture sizes. """ cuda_graph_sizes = vllm_config.scheduler_config.cuda_graph_sizes if len(cuda_graph_sizes) == 1: default_size_capture_list = [1, 2, 4] + [ i for i in range(8, cuda_graph_sizes[0] + 1, 8) ] if sorted(default_size_capture_list, reverse=True) == \ vllm_config.compilation_config.cudagraph_capture_sizes: return True return False def update_default_aclgraph_sizes(vllm_config: VllmConfig) -> None: """ Update ACL graph default capture sizes, so that new sizes are more friendly to ascend ops && hardware. """ if vllm_config.model_config is None or \ vllm_config.model_config.enforce_eager or \ not _is_default_capture_sizes(vllm_config): return # modify the default capture_sizes for Qwen3-MoE models on dp settings. # this is mainly because performance of _npu_paged_attention might degrades # on special shapes. # TODO(Angazenn): we will remove this once _npu_paged_attention is fully # replaced by npu_fused_infer_attention_score which does not contain such bugs. if vllm_config.model_config and vllm_config.model_config.hf_config.model_type == "qwen3_moe" \ and vllm_config.parallel_config.tensor_parallel_size == 1 \ and vllm_config.parallel_config.data_parallel_size > 1 : max_capture_size = vllm_config.scheduler_config.cuda_graph_sizes[0] new_cudagraph_capture_sizes = [1, 2, 5, 10, 15, 20] + [ i for i in range(24, max_capture_size + 1, 8) ] vllm_config.compilation_config.cudagraph_capture_sizes = new_cudagraph_capture_sizes vllm_config.compilation_config.init_with_cudagraph_sizes( new_cudagraph_capture_sizes) def update_aclgraph_sizes(vllm_config: VllmConfig) -> None: """Update ACL graph capture sizes based on hardware limitations""" # NOTE: Currently, we can only capture 1800 graphs at most, # due to the limitation of ACL graph. This number is bounded by # the number of streams, which is 2048, we save 248 streams # as a buffer. # Maximum number of graphs that can be captured by ACL Graph # TODO: Find out whether we need to solve allreduce function MAX_CAPTURE_SIZE = 1800 # Store original configuration and temporarily clear it compilation_config = vllm_config.compilation_config original_sizes, compilation_config.cudagraph_capture_sizes = \ compilation_config.cudagraph_capture_sizes, None # Calculate parallel configuration factor hf_config = vllm_config.model_config.hf_config if hasattr(hf_config, 'num_hidden_layers'): num_hidden_layers = hf_config.num_hidden_layers else: num_hidden_layers = get_max_hidden_layers(hf_config) parallel_config = vllm_config.parallel_config # Calculate maximum supported batch sizes considering model architecture resources_per_graph = num_hidden_layers + 1 if vllm_config.speculative_config is not None: draft_model_hf_config = vllm_config.speculative_config.draft_model_config.hf_config resources_per_graph += draft_model_hf_config.num_hidden_layers + 1 # TODO: Find out whether we need to take into account the pp_size num_comm_groups = sum(size > 1 for size in [ parallel_config.data_parallel_size, parallel_config.tensor_parallel_size, ]) if os.getenv("HCCL_OP_EXPANSION_MODE") == 'AIV': # TODO: Find out whether we need to take into account the pp_size parallel_factor = 1 + num_comm_groups + int( parallel_config.enable_expert_parallel) + int( vllm_config.additional_config.get( "multistream_overlap_shared_expert", False)) if is_moe_model(vllm_config): parallel_factor += (parallel_config.data_parallel_size > 1) else: # When AIV mode is enabled, the allreduce operator of the dense # layer model will occupy additional streams, which are buffered here. MAX_CAPTURE_SIZE = MAX_CAPTURE_SIZE - parallel_factor * resources_per_graph # Calculate maximum supported batch sizes considering model architecture on the A2 Hardware Device # Assume the following case: # MAX_CAPTURE_SIZE = 1920, num_hidden_layers = 48, data_parallel_size is 1, tensor_parallel_size is 4, # According to the formula, max_num_batch_sizes = math.floor(1920 / (48 + 1) / 2) = 19 max_num_batch_sizes = math.floor(MAX_CAPTURE_SIZE / resources_per_graph / parallel_factor) logger.info( "Calculated maximum supported batch sizes for ACL graph: %s", max_num_batch_sizes) else: # The above describes an empirical formula applicable to the A2 hardware. # Under this configuration, HCCL employs the FFTS+ method for execution unfolding, # which adds only 1 concurrent stream without consuming collective communication execution unfolding streams. # On A3 hardware, HCCL defaults to the AICPU method. # This approach may additionally allocate up to rank_size (max 16) - 1 streams per collective communication domain on the device (worst case). # Using the default collective communication unfolding method on A3 will lead to a significant reduction in the maximum supported sizes. # Therefore, the calculation formula has been modified as follows: # Assume the following case: # MAX_CAPTURE_SIZE = 1920, num_hidden_layers = 48, data_parallel_size is 1, tensor_parallel_size is 4, # According to the formula, max_num_batch_sizes = math.floor((1920 - 1 * 40) / (48 + 1) / (1 + 1 * 2)) = 12 max_num_batch_sizes = math.floor( (MAX_CAPTURE_SIZE - num_comm_groups * 40) / resources_per_graph / (1 + num_comm_groups * 2)) logger.info( "Calculated maximum supported batch sizes for ACL graph: %s", max_num_batch_sizes) logger.warning( "Currently, communication is performed using FFTS+ method, which reduces " "the number of available streams and, as a result, limits the range of runtime " "shapes that can be handled. To both improve communication performance and " "increase the number of supported shapes, set HCCL_OP_EXPANSION_MODE=AIV." ) # If original sizes exceed maximum, sample a representative subset if max_num_batch_sizes < len(original_sizes): # Sample uniformly from original sizes step = (len(original_sizes) - 1) / (max_num_batch_sizes - 1) indices = [round(i * step) for i in range(max_num_batch_sizes)] # Ensure first and last elements are preserved indices[0], indices[-1] = 0, len(original_sizes) - 1 sampled_sizes = [original_sizes[i] for i in indices] compilation_config.init_with_cudagraph_sizes(sampled_sizes) logger.info( "Adjusted ACL graph batch sizes for %s model (layers: %d): %d → %d sizes", vllm_config.model_config.architectures[0], num_hidden_layers, len(original_sizes), len(compilation_config. cudagraph_capture_sizes # type: ignore[arg-type] )) else: # No adjustment needed compilation_config.cudagraph_capture_sizes = original_sizes logger.info( "No adjustment needed for ACL graph batch sizes: %s model (layers: %d) with %d sizes", vllm_config.model_config.architectures[0], num_hidden_layers, len(original_sizes)) # default or defined cudagraph_capture_sizes may not consider num_speculative_tokens>1 scenario # the maximum size cudagraph_capture_sizes[0] should be greater or equal than # (num_speculative_tokens+1)*max_num_seqs, otherwise draft model will run in eager mode if vllm_config.speculative_config is not None and \ vllm_config.speculative_config.num_speculative_tokens > 1: num_speculative_tokens = vllm_config.speculative_config.num_speculative_tokens max_num_seqs = vllm_config.scheduler_config.max_num_seqs original_sizes, compilation_config.cudagraph_capture_sizes = \ compilation_config.cudagraph_capture_sizes, None assert len(original_sizes) > 0 if original_sizes[0] < (num_speculative_tokens + 1) * max_num_seqs: enlarged_sizes = [(num_speculative_tokens + 1) * size for size in original_sizes] compilation_config.init_with_cudagraph_sizes(enlarged_sizes) logger.info( "Adjusted ACL graphs: %s → %s for speculative decoding", original_sizes, enlarged_sizes) else: compilation_config.cudagraph_capture_sizes = original_sizes # TODO(wxy): Move to ops module def dispose_tensor(x: torch.Tensor): x.set_(torch.empty((0, ), device=x.device, dtype=x.dtype)) class ProfileExecuteDuration: _instance = None _observations: List[Tuple[str, Event, Event]] = [] _lock = Lock() def __new__(cls): with cls._lock: if cls._instance is None: cls._instance = super().__new__(cls) atexit.register(cls._instance.destroy) return cls._instance def destroy(self): with self._lock: self._observations.clear() @contextmanager def capture_async(self, duration_tag: str): if not envs_ascend.vllm_npu_MODEL_EXECUTE_TIME_OBSERVE: yield return observe_start = Event(enable_timing=True) observe_start.record() try: yield finally: observe_end = Event(enable_timing=True) observe_end.record() with self._lock: self._observations.append( (duration_tag, observe_start, observe_end)) def pop_captured_sync(self) -> dict: """Pop and synchronize all events in the observation list""" durations: dict[str, float] = {} if not envs_ascend.vllm_npu_MODEL_EXECUTE_TIME_OBSERVE: return durations while self._observations: with self._lock: tag, observe_start, observe_end = self._observations.pop() observe_end.synchronize() durations[tag] = observe_start.elapsed_time(observe_end) return durations def register_ascend_customop(vllm_config: Optional[VllmConfig] = None): """Register Ascend CustomOP NOTE: if the register branch requires model type, please use `vllm.config.get_current_vllm_config`, and ensure this will execute after model config is initilazed. """ global _ASCEND_CUSTOMOP_IS_REIGISTERED if _ASCEND_CUSTOMOP_IS_REIGISTERED: return from vllm.model_executor.custom_op import CustomOp from vllm_npu.models.layers.mla import AscendMultiHeadLatentAttention from vllm_npu.ops.activation import AscendQuickGELU, AscendSiluAndMul from vllm_npu.ops.common_fused_moe import (AscendFusedMoE, AscendSharedFusedMoE) from vllm_npu.ops.layernorm import AscendGemmaRMSNorm, AscendRMSNorm from vllm_npu.ops.linear import (AscendColumnParallelLinear, AscendMergedColumnParallelLinear, AscendQKVParallelLinear, AscendReplicatedLinear, AscendRowParallelLinear) from vllm_npu.ops.rotary_embedding import ( AscendDeepseekScalingRotaryEmbedding, AscendMRotaryEmbedding, AscendRotaryEmbedding, AscendYaRNRotaryEmbedding) from vllm_npu.ops.vocab_parallel_embedding import ( AscendLogitsProcessor, AscendParallelLMHead, AscendVocabParallelEmbedding) global REGISTERED_ASCEND_OPS REGISTERED_ASCEND_OPS = { "QuickGELU": AscendQuickGELU, "SiluAndMul": AscendSiluAndMul, "RotaryEmbedding": AscendRotaryEmbedding, "MRotaryEmbedding": AscendMRotaryEmbedding, "ColumnParallelLinear": AscendColumnParallelLinear, "RowParallelLinear": AscendRowParallelLinear, "YaRNScalingRotaryEmbedding": AscendYaRNRotaryEmbedding, "MergedColumnParallelLinear": AscendMergedColumnParallelLinear, "QKVParallelLinear": AscendQKVParallelLinear, "ReplicatedLinear": AscendReplicatedLinear, "DeepseekScalingRotaryEmbedding": AscendDeepseekScalingRotaryEmbedding, "VocabParallelEmbedding": AscendVocabParallelEmbedding, "ParallelLMHead": AscendParallelLMHead, "LogitsProcessor": AscendLogitsProcessor, "RMSNorm": AscendRMSNorm, "GemmaRMSNorm": AscendGemmaRMSNorm, "FusedMoE": AscendFusedMoE, "SharedFusedMoE": AscendSharedFusedMoE, "MultiHeadLatentAttention": AscendMultiHeadLatentAttention, } for name, op_cls in REGISTERED_ASCEND_OPS.items(): CustomOp.register_oot(_decorated_op_cls=op_cls, name=name) # NOTE: Keep this at last to ensure all custom actions are registered _ASCEND_CUSTOMOP_IS_REIGISTERED = True # TODO(zzzzwwjj): Currently there is no clear SOC_VERSION policy for A2 and A3 in CANN. # So we get the version dynamically. In the future, we should get the version info from _build_info like 310p does. class AscendSocVersion(Enum): A2 = 0 A3 = 1 UNDEFINED = 2 _ascend_soc_version = None def init_ascend_soc_version(): soc_version = torch_npu.npu.get_soc_version() global _ascend_soc_version if 220 <= soc_version <= 225: _ascend_soc_version = AscendSocVersion.A2 elif 250 <= soc_version <= 255: _ascend_soc_version = AscendSocVersion.A3 else: _ascend_soc_version = AscendSocVersion.UNDEFINED def get_ascend_soc_version(): global _ascend_soc_version assert _ascend_soc_version is not None return _ascend_soc_version def lmhead_tp_enable() -> bool: return get_ascend_config().lmhead_tensor_parallel_size is not None def oproj_tp_enable() -> bool: return get_ascend_config().oproj_tensor_parallel_size is not None def mlp_tp_enable() -> bool: return envs_ascend.vllm_npu_ENABLE_MLP_OPTIMIZE def matmul_allreduce_enable() -> bool: return envs_ascend.vllm_npu_ENABLE_MATMUL_ALLREDUCE def dense_optim_enable() -> bool: return envs_ascend.vllm_npu_ENABLE_DENSE_OPTIMIZE def enable_sp(vllm_config=None) -> bool: global _ENABLE_SP if _ENABLE_SP is None: if vllm_config is None: from vllm.config import get_current_vllm_config vllm_config = get_current_vllm_config() _ENABLE_SP = ( vllm_config.compilation_config.pass_config. enable_sequence_parallelism or envs_ascend.vllm_npu_ENABLE_FLASHCOMM1 # Flash comm 1 should be enabled by env vllm_npu_ENABLE_FLASHCOMM1 # We retain the env vllm_npu_ENABLE_FLASHCOMM here for backward compatibility. or bool(int(os.getenv("vllm_npu_ENABLE_FLASHCOMM", '0')))) return _ENABLE_SP # TODO remove it after vllm has this func def shared_expert_dp_enabled() -> bool: return get_ascend_config().enable_shared_expert_dp or enable_sp() def is_moe_model(vllm_config: VllmConfig): """Checks if the model is a MoE model by config""" global _IS_MOE_MODEL if _IS_MOE_MODEL is None: model_configs = vllm_config.model_config.hf_config.to_dict() _IS_MOE_MODEL = _is_contain_expert(model_configs) return _IS_MOE_MODEL def _is_contain_expert(config: Any): if isinstance(config, dict): for k, v in config.items(): if "expert" in str(k): return True if _is_contain_expert(v): return True return False def is_vl_model(vllm_config: VllmConfig): """Checks if the model is a VL model by config""" global _IS_VL_MODEL if _IS_VL_MODEL is None and vllm_config.model_config: model_configs = vllm_config.model_config.hf_config.to_dict() _IS_VL_MODEL = "VL" in model_configs["architectures"][0] return _IS_VL_MODEL def weak_ref_tensor(tensor: Any) -> Any: """ Create a weak reference to a tensor. The new tensor will share the same data as the original tensor, but will not keep the original tensor alive. """ if isinstance(tensor, torch.Tensor): return torch.ops._C_ascend.weak_ref_tensor(tensor) else: return tensor def weak_ref_tensors( tensors: Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor]] ) -> Union[torch.Tensor, list[Any], tuple[Any], Any]: """ Convenience function to create weak references to tensors, for single tensor, list of tensors or tuple of tensors. This function should be used in the following scenario: When a tensor is created during graph capture, and it's held by a method that's not part of the graph, we don't really need to store it, but we **do need** its buffer pointer. If we don't handle this, it cannot be garbage collected, leading to a memory leak. To avoid this, we should create a weak reference to the tensor. """ if isinstance(tensors, torch.Tensor): return weak_ref_tensor(tensors) if isinstance(tensors, list): return [weak_ref_tensor(t) for t in tensors] if isinstance(tensors, tuple): return tuple(weak_ref_tensor(t) for t in tensors) raise ValueError("Invalid type for tensors") def npu_stream_switch(target_stream: torch.npu.Stream, *, enabled: bool = True): """ Switch to the target stream if enabled is True. Otherwise, do nothing. """ if not enabled: return nullcontext() assert target_stream is not None return torch.npu.stream(target_stream) def create_hccl_pg_options(group_name: str): options = torch_npu._C._distributed_c10d.ProcessGroupHCCL.Options() hccl_config = get_hccl_config_for_pg_options(group_name) if hccl_config is not None: options.hccl_config = hccl_config return options def get_hccl_config_for_pg_options(group_name: str) -> Optional[dict]: """ Get HCCL process group options for the given communication group name. Args: group_name: Name of the communication group Returns: HCCL pg_options or None for mc2 group """ # FIXME: Current mc2 operators only perform communication space partitioning # based on HCCL_BUFFSIZE configuration. Using pg_options with mc2 group would # result in memory misalignment problems. if group_name and "mc2" in group_name: return None hccl_config_map = { "dp": { "hccl_buffer_size": calculate_dp_buffer_size() }, } return hccl_config_map.get(group_name, get_default_buffer_config()) def get_default_buffer_config() -> dict: return {"hccl_buffer_size": _DEFAULT_BUFFER_SIZE} def calculate_dp_buffer_size() -> int: """ formula of dp buffer size: dp_size + 2 (flags: with_prefill and enable_dbo) """ from vllm.config import get_current_vllm_config vllm_config = get_current_vllm_config() dp_size = vllm_config.parallel_config.data_parallel_size int32_size = torch.iinfo(torch.int32).bits // 8 dp_buffer_size = math.ceil((dp_size + 2) * int32_size / (1024 * 1024)) return max(dp_buffer_size, _MIN_DP_BUFFER_SIZE) # Currently, when in A2, setting the environment variables HCCL_INTRA_PCIE_ENABLE=1 # and HCCL_INTRA_ROCE_ENABLE=0 can reduce cross-machine communication traffic and # significantly improve communication performance of MC2 ops dispatch/combine. def is_hierarchical_communication_enabled(): return (os.getenv("HCCL_INTRA_ROCE_ENABLE", "") == "0" and os.getenv("HCCL_INTRA_PCIE_ENABLE", "") == "1") def has_layer_idx(model_instance: torch.nn.Module) -> bool: if model_instance is None: return False global _HAS_LAYER_IDX if _HAS_LAYER_IDX is None: _HAS_LAYER_IDX = hasattr(model_instance, "model") and \ hasattr(model_instance.model, "start_layer") return _HAS_LAYER_IDX