# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # This file is a part of the vllm-ascend project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Optional import torch from vllm.model_executor.models.roberta import ( RobertaEmbedding, RobertaForSequenceClassification, replace_roberta_positions) from vllm.sequence import IntermediateTensors # aclgraph does not support shift operator for now # TODO: revert me when aclgraph supports shift operator TOKEN_TYPE_SHIFT = 30 TOKEN_TYPE_MULTIPLIER = 1 << 30 TOKEN_MASK = TOKEN_TYPE_MULTIPLIER - 1 def _encode_token_type_ids(input_ids: torch.Tensor, token_type_ids: torch.Tensor) -> None: # input_ids can be padded to the right input_ids[:token_type_ids.shape[0]].bitwise_or_(token_type_ids * TOKEN_TYPE_MULTIPLIER) def _decode_token_type_ids(input_ids: torch.Tensor) -> torch.Tensor: token_type_ids = input_ids // TOKEN_TYPE_MULTIPLIER input_ids.bitwise_and_(TOKEN_MASK) return token_type_ids def roberta_for_sequence_classification_forward( self, input_ids: Optional[torch.Tensor], positions: torch.Tensor, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, ) -> torch.Tensor: replace_roberta_positions(input_ids=input_ids, position_ids=positions, padding_idx=self.padding_idx) if token_type_ids is not None: assert self.roberta.config.vocab_size < (1 << TOKEN_TYPE_SHIFT) assert input_ids is not None _encode_token_type_ids(input_ids, token_type_ids) return self.roberta(input_ids=input_ids, positions=positions, inputs_embeds=inputs_embeds, intermediate_tensors=intermediate_tensors) def roberta_embedding_forward( self, input_ids: torch.Tensor, position_ids: torch.Tensor, ) -> torch.Tensor: token_type_ids = _decode_token_type_ids(input_ids) inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings + position_embeddings embeddings = self.LayerNorm(embeddings) return embeddings RobertaEmbedding.forward = roberta_embedding_forward RobertaForSequenceClassification.forward = roberta_for_sequence_classification_forward