import torch import vllm from vllm._custom_ops import apply_repetition_penalties_torch def apply_repetition_penalties(logits: torch.Tensor, prompt_mask: torch.Tensor, output_mask: torch.Tensor, repetition_penalties: torch.Tensor) -> None: """Apply repetition penalties to logits in-place. Args: logits: The logits tensor of shape [num_seqs, vocab_size]. prompt_mask: A boolean tensor indicating which tokens appear in the prompt. output_mask: A boolean tensor indicating which tokens appear in the output. repetition_penalties: The repetition penalties of shape (num_seqs, ). """ apply_repetition_penalties_torch(logits, prompt_mask, output_mask, repetition_penalties) # NPU device type tensors have attributes is_cuda=True and is_npu=True, according to its implementation in # https://github.com/Ascend/pytorch/blob/863b9071cbdf47023c12c246e3efa9c6e2285fc6/torch_npu/npu/_stream_check.py#L74 # This causes that vLLM's apply_repetition_penalties function will run into the branch of "if logits.is_cuda" and # call the custom op implemented in CUDA, which is not compatible with NPU. # Reference: https://github.com/vllm-project/vllm/blob/f66673a39d9f364194c249f28098cad8a5584ccb/vllm/_custom_ops.py#L314 vllm._custom_ops.apply_repetition_penalties = apply_repetition_penalties