# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # This file is a part of the vllm-ascend project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import List, Optional, Union import torch import vllm from torch.distributed import Backend from vllm.distributed.parallel_state import (GroupCoordinator, _get_unique_name, _register_group) from vllm_npu.distributed.communicator import NPUCommunicator from vllm_npu.utils import create_hccl_pg_options class GroupCoordinatorPatch(GroupCoordinator): def __init__( self, group_ranks: list[list[int]], local_rank: int, torch_distributed_backend: Union[str, Backend], use_device_communicator: bool, # whether to use device communicator use_message_queue_broadcaster: bool = False, group_name: Optional[str] = None, ): group_name = group_name or "anonymous" self.unique_name = _get_unique_name(group_name) _register_group(self) self.rank = torch.distributed.get_rank() self.local_rank = local_rank self_device_group = None self_cpu_group = None hccl_pg_options = create_hccl_pg_options(group_name) for ranks in group_ranks: device_group = torch.distributed.new_group( ranks, backend=torch_distributed_backend, pg_options=hccl_pg_options) # a group with `gloo` backend, to allow direct coordination between # processes through the CPU. cpu_group = torch.distributed.new_group(ranks, backend="gloo") if self.rank in ranks: self.ranks = ranks self.world_size = len(ranks) self.rank_in_group = ranks.index(self.rank) self_device_group = device_group self_cpu_group = cpu_group assert self_cpu_group is not None assert self_device_group is not None self.cpu_group = self_cpu_group self.device_group = self_device_group self.device = torch.npu.current_device() self.use_device_communicator = use_device_communicator self.device_communicator = None if use_device_communicator and self.world_size > 1: self.device_communicator = NPUCommunicator( cpu_group=self.cpu_group, device=self.device, device_group=self.device_group, unique_name=self.unique_name, ) from vllm.distributed.device_communicators.shm_broadcast import \ MessageQueue self.mq_broadcaster: Optional[MessageQueue] = None if use_message_queue_broadcaster and self.world_size > 1: self.mq_broadcaster = MessageQueue.create_from_process_group( self.cpu_group, 1 << 22, 6) self.use_custom_op_call = False self.use_cpu_custom_send_recv = False def all_to_all(self, input_: torch.Tensor, scatter_dim: int = 0, gather_dim: int = -1, scatter_sizes: Optional[List[int]] = None, gather_sizes: Optional[List[int]] = None) -> torch.Tensor: if self.world_size == 1: return input_ assert -input_.dim() <= scatter_dim < input_.dim(), ( f"Invalid scatter dim ({scatter_dim}) for input tensor with shape {input_.size()}" ) assert -input_.dim() <= gather_dim < input_.dim(), ( f"Invalid gather dim ({gather_dim}) for input tensor with shape {input_.size()}" ) assert self.device_communicator is not None, "device_communicator should be initialized when world_size > 1" return self.device_communicator.all_to_all(input_, scatter_dim, gather_dim, scatter_sizes, gather_sizes) vllm.distributed.parallel_state.GroupCoordinator = GroupCoordinatorPatch