from typing import Optional import torch import vllm from vllm.forward_context import ForwardContext, get_forward_context def forward( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, # For some alternate attention backends like MLA the attention output # shape does not match the query shape, so we optionally let the model # definition specify the output tensor shape. output_shape: Optional[torch.Size] = None, ) -> torch.Tensor: """ The KV cache is stored inside this class and is accessed via `self.kv_cache`. Attention metadata (`attn_metadata`) is set using a context manager in the model runner's `execute_model` method. It is accessed via forward context using `vllm.forward_context.get_forward_context().attn_metadata`. """ if self.calculate_kv_scales: attn_metadata = get_forward_context().attn_metadata if attn_metadata.enable_kv_scales_calculation: self.calc_kv_scales(query, key, value) output_dtype = query.dtype if self.query_quant is not None: # quantizing with a simple torch operation enables # torch.compile to fuse this into previous ops # which reduces overheads during decoding. # Otherwise queries are quantized using custom ops # which causes decoding overheads assert self.kv_cache_dtype in {"fp8", "fp8_e4m3"} query, _ = self.query_quant(query, self._q_scale) if self.use_output: output_shape = (output_shape if output_shape is not None else query.shape) output = torch.empty(output_shape, dtype=output_dtype, device=query.device) hidden_size = output_shape[-1] # We skip reshaping query, key and value tensors for the MLA # backend since these tensors have different semantics and are # processed differently. if not self.use_mla: # Reshape the query, key, and value tensors. # NOTE(woosuk): We do this outside the custom op to minimize the # CPU overheads from the non-CUDA-graph regions. query = query.view(-1, self.num_heads, self.head_size) output = output.view(-1, self.num_heads, self.head_size) if key is not None: key = key.view(-1, self.num_kv_heads, self.head_size) if value is not None: value = value.view(-1, self.num_kv_heads, self.head_size) if self.use_direct_call: forward_context: ForwardContext = get_forward_context() attn_metadata = forward_context.attn_metadata if isinstance(attn_metadata, dict): attn_metadata = attn_metadata[self.layer_name] self_kv_cache = self.kv_cache[forward_context.virtual_engine] self.impl.forward(self, query, key, value, self_kv_cache, attn_metadata, output=output) else: torch.ops.vllm.unified_attention_with_output( query, key, value, output, self.layer_name) return output.view(-1, hidden_size) else: if self.use_direct_call: forward_context = get_forward_context() attn_metadata = forward_context.attn_metadata if isinstance(attn_metadata, dict): attn_metadata = attn_metadata[self.layer_name] self_kv_cache = self.kv_cache[forward_context.virtual_engine] return self.impl.forward(self, query, key, value, self_kv_cache, attn_metadata) else: return torch.ops.vllm.unified_attention(query, key, value, self.layer_name) vllm.attention.layer.Attention.forward = forward