# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project # SPDX-FileCopyrightText: Songlin Yang, Yu Zhang # # This file contains code copied from the flash-linear-attention project. # The original source code was licensed under the MIT license and included # the following copyright notice: # Copyright (c) 2023-2025, Songlin Yang, Yu Zhang # ruff: noqa: E501 # mypy: ignore-errors import os from typing import Optional import torch from vllm.triton_utils import tl, tldevice, triton if os.environ.get('FLA_USE_FAST_OPS', '0') == '1': div = tldevice.fast_dividef exp = tldevice.fast_expf log = tldevice.fast_logf log2 = tldevice.fast_log2f else: @triton.jit def div_normal(x, y): return x / y div = div_normal exp = tl.exp log = tl.log log2 = tl.log2 @triton.heuristics({ 'USE_INITIAL_STATE': lambda args: args['h0'] is not None, 'IS_VARLEN': lambda args: args['cu_seqlens'] is not None, "IS_CONTINUOUS_BATCHING": lambda args: args['ssm_state_indices'] is not None, "IS_SPEC_DECODING": lambda args: args['num_accepted_tokens'] is not None, }) @triton.jit(do_not_specialize=['N', 'T']) def fused_recurrent_gated_delta_rule_fwd_kernel( q, k, v, g, beta, o, h0, ht, cu_seqlens, ssm_state_indices, num_accepted_tokens, scale, N: tl.constexpr, # num of sequences T: tl.constexpr, # num of tokens B: tl.constexpr, H: tl.constexpr, HV: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, stride_init_state_token: tl.constexpr, stride_final_state_token: tl.constexpr, stride_indices_seq: tl.constexpr, stride_indices_tok: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, # whether to use initial state INPLACE_FINAL_STATE: tl.constexpr, # whether to store final state inplace IS_BETA_HEADWISE: tl. constexpr, # whether beta is headwise vector or scalar, USE_QK_L2NORM_IN_KERNEL: tl.constexpr, IS_VARLEN: tl.constexpr, IS_CONTINUOUS_BATCHING: tl.constexpr, IS_SPEC_DECODING: tl.constexpr, ): i_k, i_v, i_nh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_n, i_hv = i_nh // HV, i_nh % HV i_h = i_hv // (HV // H) if IS_VARLEN: bos, eos = tl.load(cu_seqlens + i_n).to( tl.int64), tl.load(cu_seqlens + i_n + 1).to(tl.int64) all = T T = eos - bos else: bos, eos = i_n * T, i_n * T + T all = B * T if T == 0: # no tokens to process for this sequence return o_k = i_k * BK + tl.arange(0, BK) o_v = i_v * BV + tl.arange(0, BV) mask_k = o_k < K mask_v = o_v < V mask_h = mask_k[:, None] & mask_v[None, :] b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: if IS_CONTINUOUS_BATCHING: if IS_SPEC_DECODING: i_t = tl.load(num_accepted_tokens + i_n).to(tl.int64) - 1 else: i_t = 0 p_h0 = h0 + tl.load(ssm_state_indices + i_n * stride_indices_seq + i_t).to(tl.int64) * stride_init_state_token else: p_h0 = h0 + bos * HV * K * V p_h0 = p_h0 + i_hv * K * V + o_k[:, None] * V + o_v[None, :] b_h += tl.load(p_h0, mask=mask_h, other=0).to(tl.float32) for i_t in range(0, T): p_q = q + (bos * H + i_h) * K + o_k + H * K * i_t p_k = k + (bos * H + i_h) * K + o_k + H * K * i_t p_v = v + (bos * HV + i_hv) * V + o_v + HV * V * i_t if IS_BETA_HEADWISE: p_beta = beta + (bos * HV + i_hv) * V + o_v + HV * V * i_t else: p_beta = beta + bos * HV + i_hv + HV * i_t p_g = g + bos * HV + i_hv + HV * i_t p_o = o + ((i_k * all + bos) * HV + i_hv) * V + o_v + HV * V * i_t b_q = tl.load(p_q, mask=mask_k, other=0).to(tl.float32) b_k = tl.load(p_k, mask=mask_k, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_v, other=0).to(tl.float32) b_g = tl.load(p_g).to(tl.float32) if USE_QK_L2NORM_IN_KERNEL: b_q = b_q / tl.sqrt(tl.sum(b_q * b_q) + 1e-6) b_k = b_k / tl.sqrt(tl.sum(b_k * b_k) + 1e-6) b_q = b_q * scale # [BK, BV] # b_h *= tl.exp(b_g) b_h *= exp(b_g) # [BV] b_v -= tl.sum(b_h * b_k[:, None], 0) if IS_BETA_HEADWISE: b_beta = tl.load(p_beta, mask=mask_v, other=0).to(tl.float32) else: b_beta = tl.load(p_beta).to(tl.float32) b_v *= b_beta # [BK, BV] b_h += b_k[:, None] * b_v[None, :] # [BV] b_o = tl.sum(b_h * b_q[:, None], 0) tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_v) # keep the states for multi-query tokens if INPLACE_FINAL_STATE: p_ht = ht + tl.load(ssm_state_indices + i_n * stride_indices_seq + i_t).to(tl.int64) * stride_final_state_token else: p_ht = ht + (bos + i_t) * stride_final_state_token p_ht = p_ht + i_hv * K * V + o_k[:, None] * V + o_v[None, :] tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_h) def fused_recurrent_gated_delta_rule_fwd( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, beta: torch.Tensor, scale: float, initial_state: torch.Tensor, inplace_final_state: bool = True, cu_seqlens: Optional[torch.LongTensor] = None, ssm_state_indices: Optional[torch.Tensor] = None, num_accepted_tokens: Optional[torch.Tensor] = None, use_qk_l2norm_in_kernel: bool = False, ) -> tuple[torch.Tensor, torch.Tensor]: B, T, H, K, V = *k.shape, v.shape[-1] HV = v.shape[2] N = B if cu_seqlens is None else len(cu_seqlens) - 1 BK, BV = triton.next_power_of_2(K), min(triton.next_power_of_2(V), 8) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) assert NK == 1, "NK > 1 is not supported yet" num_stages = 3 num_warps = 1 o = q.new_empty(NK, *v.shape) if inplace_final_state: final_state = initial_state else: final_state = q.new_empty(T, HV, K, V, dtype=initial_state.dtype) stride_init_state_token = initial_state.stride(0) stride_final_state_token = final_state.stride(0) if ssm_state_indices is None: stride_indices_seq, stride_indices_tok = 1, 1 elif ssm_state_indices.ndim == 1: stride_indices_seq, stride_indices_tok = ssm_state_indices.stride(0), 1 else: stride_indices_seq, stride_indices_tok = ssm_state_indices.stride() # print("N: ", N) # print("T: ", T) # print("B: ", B) # print("H: ", H) # print("HV: ", HV) # print("K: ", K) # print("V: ", V) # print("BK: ", BK) # print("BV: ", BV) grid = (NK, NV, N * HV) fused_recurrent_gated_delta_rule_fwd_kernel[grid]( q=q, k=k, v=v, g=g, beta=beta, o=o, h0=initial_state, ht=final_state, cu_seqlens=cu_seqlens, ssm_state_indices=ssm_state_indices, num_accepted_tokens=num_accepted_tokens, scale=scale, N=N, T=T, B=B, H=H, HV=HV, K=K, V=V, BK=BK, BV=BV, stride_init_state_token=stride_init_state_token, stride_final_state_token=stride_final_state_token, stride_indices_seq=stride_indices_seq, stride_indices_tok=stride_indices_tok, IS_BETA_HEADWISE=beta.ndim == v.ndim, USE_QK_L2NORM_IN_KERNEL=use_qk_l2norm_in_kernel, INPLACE_FINAL_STATE=inplace_final_state, num_warps=num_warps, num_stages=num_stages, ) o = o.squeeze(0) return o, final_state class FusedRecurrentFunction(torch.autograd.Function): @staticmethod def forward(ctx, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, beta: torch.Tensor, scale: float, initial_state: torch.Tensor, inplace_final_state: bool = True, cu_seqlens: Optional[torch.LongTensor] = None, ssm_state_indices: Optional[torch.Tensor] = None, num_accepted_tokens: Optional[torch.Tensor] = None, use_qk_l2norm_in_kernel: bool = False): o, final_state = fused_recurrent_gated_delta_rule_fwd( q=q.contiguous(), k=k.contiguous(), v=v.contiguous(), g=g.contiguous(), beta=beta.contiguous(), scale=scale, initial_state=initial_state, inplace_final_state=inplace_final_state, cu_seqlens=cu_seqlens, ssm_state_indices=ssm_state_indices, num_accepted_tokens=num_accepted_tokens, use_qk_l2norm_in_kernel=use_qk_l2norm_in_kernel, ) return o, final_state def fused_recurrent_gated_delta_rule( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, g: torch.Tensor, beta: torch.Tensor = None, scale: float = None, initial_state: torch.Tensor = None, inplace_final_state: bool = True, cu_seqlens: Optional[torch.LongTensor] = None, ssm_state_indices: Optional[torch.Tensor] = None, num_accepted_tokens: Optional[torch.Tensor] = None, use_qk_l2norm_in_kernel: bool = False, ) -> tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `[B, T, H, K]`. k (torch.Tensor): keys of shape `[B, T, H, K]`. v (torch.Tensor): values of shape `[B, T, HV, V]`. GVA is applied if `HV > H`. g (torch.Tensor): g (decays) of shape `[B, T, HV]`. beta (torch.Tensor): betas of shape `[B, T, HV]`. scale (Optional[int]): Scale factor for the RetNet attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `[N, HV, K, V]` for `N` input sequences. For equal-length input sequences, `N` equals the batch size `B`. Default: `None`. inplace_final_state: bool: Whether to store the final state in-place to save memory. Default: `True`. cu_seqlens (torch.LongTensor): Cumulative sequence lengths of shape `[N+1]` used for variable-length training, consistent with the FlashAttention API. ssm_state_indices (Optional[torch.Tensor]): Indices to map the input sequences to the initial/final states. num_accepted_tokens (Optional[torch.Tensor]): Number of accepted tokens for each sequence during decoding. Returns: o (torch.Tensor): Outputs of shape `[B, T, HV, V]`. final_state (torch.Tensor): Final state of shape `[N, HV, K, V]`. Examples:: >>> import torch >>> import torch.nn.functional as F >>> from einops import rearrange >>> from fla.ops.gated_delta_rule import fused_recurrent_gated_delta_rule # inputs with equal lengths >>> B, T, H, HV, K, V = 4, 2048, 4, 8, 512, 512 >>> q = torch.randn(B, T, H, K, device='cuda') >>> k = F.normalize(torch.randn(B, T, H, K, device='cuda'), p=2, dim=-1) >>> v = torch.randn(B, T, HV, V, device='cuda') >>> g = F.logsigmoid(torch.rand(B, T, HV, device='cuda')) >>> beta = torch.rand(B, T, HV, device='cuda').sigmoid() >>> h0 = torch.randn(B, HV, K, V, device='cuda') >>> o, ht = fused_gated_recurrent_delta_rule( q, k, v, g, beta, initial_state=h0, ) # for variable-length inputs, the batch size `B` is expected to be 1 and `cu_seqlens` is required >>> q, k, v, g, beta = map(lambda x: rearrange(x, 'b t ... -> 1 (b t) ...'), (q, k, v, g, beta)) # for a batch with 4 sequences, `cu_seqlens` with 5 start/end positions are expected >>> cu_seqlens = q.new_tensor([0, 2048, 4096, 6144, 8192], dtype=torch.long) >>> o_var, ht_var = fused_gated_recurrent_delta_rule( q, k, v, g, beta, initial_state=h0, cu_seqlens=cu_seqlens ) """ if cu_seqlens is not None and q.shape[0] != 1: raise ValueError( f"The batch size is expected to be 1 rather than {q.shape[0]} when using `cu_seqlens`." f"Please flatten variable-length inputs before processing.") if scale is None: scale = k.shape[-1]**-0.5 else: assert scale > 0, "scale must be positive" if beta is None: beta = torch.ones_like(q[..., 0]) o, final_state = FusedRecurrentFunction.apply( q, k, v, g, beta, scale, initial_state, inplace_final_state, cu_seqlens, ssm_state_indices, num_accepted_tokens, use_qk_l2norm_in_kernel, ) return o, final_state