# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is a part of the vllm-ascend project. # import math from typing import Optional, Tuple import torch import torch_npu from vllm.forward_context import get_forward_context from vllm.model_executor.layers.rotary_embedding import ( DeepseekScalingRotaryEmbedding, MRotaryEmbedding, RotaryEmbedding, YaRNScalingRotaryEmbedding) from vllm_npu.platform import NPUPlatform from vllm_npu.utils import enable_custom_op, is_310p def _custom_rotary_embedding_enabled(query, neox_style, head_size): return query.dtype == torch.float16 and neox_style and head_size % 32 == 0 and enable_custom_op( ) def _rope_forward_oot( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, is_neox_style: bool, offsets: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: query_shape, key_shape = query.shape, key.shape if self.cos_sin_cache.device != query.device: self.cos_sin_cache = self.cos_sin_cache.to(query.device) if self.cos_sin_cache.dtype != query.dtype: self.cos_sin_cache = self.cos_sin_cache.to(query.dtype) # adopt custom kernel path for rotary_embedding if _custom_rotary_embedding_enabled(query, is_neox_style, self.head_size) and not is_310p(): query, key = torch.ops._C_ascend.rotary_embedding( positions, query, key, self.head_size, self.cos_sin_cache, is_neox_style, ) return query.view(query_shape), key.view(key_shape) if offsets is not None: raise NotImplementedError( "Batched rotary embedding is currently not supported on NPU.") else: if self.cos is not None and \ self.sin is not None: # If cos and sin are generated outside, use npu_apply_rotary_pos_emb to avoid redundant calculation. # This method requires head_size and rotary_dim equal 128 and neox_style is True query = query.contiguous().view(1, query.shape[0], -1, self.head_size) key = key.contiguous().view(1, key.shape[0], -1, self.head_size) torch_npu.npu_apply_rotary_pos_emb(query, key, self.cos, self.sin) elif self.rotary_dim < self.head_size: num_tokens = query.shape[0] query = query.view(num_tokens, -1, self.head_size) key = key.view(num_tokens, -1, self.head_size) q_rot = query[..., :self.rotary_dim] q_pass = query[..., self.rotary_dim:] k_rot = key[..., :self.rotary_dim] k_pass = key[..., self.rotary_dim:] q_rot = q_rot.contiguous().view(num_tokens, -1) k_rot = k_rot.contiguous().view(num_tokens, -1) torch_npu._npu_rotary_embedding( positions, q_rot, k_rot, self.head_size, self.cos_sin_cache, is_neox_style, ) q_rot = q_rot.view(num_tokens, -1, self.rotary_dim) k_rot = k_rot.view(num_tokens, -1, self.rotary_dim) q = torch.cat((q_rot, q_pass), dim=-1).reshape(query_shape) k = torch.cat((k_rot, k_pass), dim=-1).reshape(key_shape) return q, k else: # TODO: Remove the contiguous in the future. query = query.contiguous().view(query.shape[0], -1) key = key.contiguous().view(key.shape[0], -1) torch_npu._npu_rotary_embedding( positions, query, key, self.head_size, self.cos_sin_cache, is_neox_style, ) return query.view(query_shape), key.view(key_shape) class AscendRotaryEmbedding(RotaryEmbedding): def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: float, is_neox_style: bool, dtype: torch.dtype, ) -> None: self.cos = None self.sin = None super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) def forward_oot( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, is_neox_style_override: Optional[bool] = None, ): is_neox_style = self.is_neox_style if is_neox_style_override is not None: is_neox_style = is_neox_style_override forward_context = get_forward_context() is_first_layer = forward_context.is_first_layer # Generate cos and sin outside layers to avoid repeated calculation. if is_neox_style and self.head_size == 128 and self.cos_sin_cache.shape[ -1] == 128: if is_first_layer: cos_sin = self.cos_sin_cache.index_select(0, positions) last_dim = cos_sin.size()[-1] cos, sin = cos_sin.reshape(-1, 2, last_dim // 2).repeat( 1, 1, 2).chunk(2, dim=-2) # BSNH self.cos = cos.view(1, -1, 1, last_dim).contiguous() self.sin = sin.view(1, -1, 1, last_dim).contiguous() forward_context.is_first_layer = False return _rope_forward_oot(self, positions, query, key, is_neox_style, offsets) class AscendYaRNRotaryEmbedding(YaRNScalingRotaryEmbedding): def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: float, is_neox_style: bool, scaling_factor: float, dtype: torch.dtype, *, extrapolation_factor: float = 1, attn_factor: float = 1, beta_fast: int = 32, beta_slow: int = 1, ) -> None: self.cos = None self.sin = None extra_kwargs = { "extrapolation_factor": extrapolation_factor, "attn_factor": attn_factor, "beta_fast": beta_fast, "beta_slow": beta_slow } super().__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, scaling_factor, dtype, **extra_kwargs) def forward_oot( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None, is_neox_style_override: Optional[bool] = None, ): return AscendRotaryEmbedding.forward_oot(self, positions, query, key, offsets, is_neox_style_override) class AscendDeepseekScalingRotaryEmbedding(DeepseekScalingRotaryEmbedding): def __init__( self, head_size: int, rotary_dim: int, max_position_embeddings: int, base: int, is_neox_style: bool, scaling_factor: float, dtype: torch.dtype, *, extrapolation_factor: float = 1, attn_factor: float = 1, beta_fast: int = 32, beta_slow: int = 1, mscale: float = 1, mscale_all_dim: float = 0, ) -> None: # Note: we adopt the native huggingface deepseek rope initialization code from # https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/blob/main/modeling_deepseek.py for # its more ascend compute friendly self.scaling_factor = scaling_factor self.extrapolation_factor = extrapolation_factor self.attn_factor = attn_factor self.beta_fast = beta_fast self.beta_slow = beta_slow # Get n-d magnitude scaling corrected for interpolation. self.mscale = float( self._yarn_get_mscale(self.scaling_factor, float(mscale)) / self._yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) * attn_factor) super(DeepseekScalingRotaryEmbedding, self).__init__(head_size, rotary_dim, max_position_embeddings, base, is_neox_style, dtype) # NOTE: For ascend friendly computing, reorder sin and cos cache self.max_seq_len = math.ceil(max_position_embeddings * scaling_factor) self._set_cos_sin_cache(self.max_seq_len, device=NPUPlatform.device_type, dtype=dtype) def _yarn_get_mscale(self, scale: float = 1, mscale: float = 1) -> float: if scale <= 1: return 1.0 return 0.1 * mscale * math.log(scale) + 1.0 def _rotate_half(self, x): """Rotates half the hidden dims of the input.""" x1 = x[..., :x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2:] return torch.cat((-x2, x1), dim=-1) def _yarn_linear_ramp_mask(self, min_value, max_value, dim): # Note: The if conditional branch is not used here # to solve MTP compilation error. max_value += (min_value == max_value).float() * 0.001 linear_func = (torch.arange(dim, dtype=torch.float32) - min_value) / (max_value - min_value) ramp_func = torch.clamp(linear_func, 0, 1) return ramp_func # Inverse dim formula to find dim based on number of rotations def _yarn_find_correction_dim(self, num_rotations, dim, base=10000, max_position_embeddings=2048): # Note: use torch instead of math to solve MTP compilation error. return (dim * torch.log( torch.tensor(max_position_embeddings) / (num_rotations * 2 * torch.pi))) / (2 * torch.log(torch.tensor(base))) # Find dim range bounds based on rotations def _yarn_find_correction_range(self, low_rot, high_rot, dim, base=10000, max_position_embeddings=2048): # Note: use torch instead of math to solve MTP compilation error. low = torch.floor( self._yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)) high = torch.ceil( self._yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)) # Note: use torch instead of max/min to solve MTP compilation error. return torch.clamp(low, min=0), torch.clamp(high, max=dim - 1) # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb def _apply_rotary_pos_emb(self, q, k, cos, sin, position_ids, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`): The position indices of the tokens corresponding to the query and key tensors. For example, this can be used to pass offsetted position ids when working with a KV-cache. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos[position_ids] sin = sin[position_ids] cos = cos[:, None, None, :] sin = sin[:, None, None, :] if len(q.shape) == 3: q = q[:, :, None, :] if len(k.shape) == 2: k = k[:, None, None, :] elif len(k.shape) == 3: k = k[:, :, None, :] b, h_q, s, d = q.shape q = q.view(b, h_q, s, d // 2, 2).transpose(4, 3).reshape(b, h_q, s, d) b, h_k, s, d = k.shape k = k.view(b, h_k, s, d // 2, 2).transpose(4, 3).reshape(b, h_k, s, d) q_embed = (q * cos) + (self._rotate_half(q) * sin) k_embed = (k * cos) + (self._rotate_half(k) * sin) q_embed = q_embed.view(b, h_q, d) k_embed = k_embed.view(b, h_k, d) return q_embed, k_embed def _set_cos_sin_cache(self, max_seq_len, device, dtype): dim = self.rotary_dim freq_extra = 1.0 / (self.base**( torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) freq_inter = 1.0 / (self.scaling_factor * self.base**( torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)) low, high = self._yarn_find_correction_range( self.beta_fast, self.beta_slow, dim, self.base, self.max_position_embeddings, ) inv_freq_mask = 1.0 - self._yarn_linear_ramp_mask( low, high, dim // 2).to(device=device, dtype=torch.float32) inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask self.register_buffer("inv_freq", inv_freq, persistent=False) t = torch.arange(max_seq_len, device=device, dtype=torch.float32) freqs = torch.outer(t, inv_freq) cos_cached = torch.cat([freqs, freqs], dim=-1).cos() * self.mscale sin_cached = torch.cat([freqs, freqs], dim=-1).sin() * self.mscale cos_cached = cos_cached.to(dtype) sin_cached = sin_cached.to(dtype) cache = torch.cat( [freqs.cos() * self.mscale, freqs.sin() * self.mscale], dim=-1).to(dtype) self.register_buffer("cos_sin_cache", cache, persistent=False) self.register_buffer("cos_cached", cos_cached, persistent=False) self.register_buffer("sin_cached", sin_cached, persistent=False) def forward(self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, offsets: Optional[torch.Tensor] = None): if len(key.shape) == 2: key = key[:, None, :] # Note: we implement the non neox_style method with shuffle the last dim and neox style # calculation method which is also more compute friendly to the ascend machine # https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/blob/main/modeling_deepseek.py is_neox_style = True if self.is_neox_style is False: b, h_q, d = query.shape query = query.view(b, h_q, d // 2, 2).transpose(3, 2).reshape(b, h_q, d) b, h_k, d = key.shape key = key.view(b, h_k, d // 2, 2).transpose(3, 2).reshape(b, h_k, d) q_pe, k_pe = _rope_forward_oot(self, positions, query, key, is_neox_style, offsets) return q_pe, k_pe class AscendMRotaryEmbedding(MRotaryEmbedding): def forward_oot( self, positions: torch.Tensor, query: torch.Tensor, key: torch.Tensor, ): if self.mrope_section != [16, 24, 24]: return super().forward_oot(positions, query, key) import torch_npu mrope_section = [0, 0, 0 ] if positions.ndim == 1 else self.mrope_section if self.cos_sin_cache.device != query.device: # type: ignore self.cos_sin_cache = self.cos_sin_cache.to( # type: ignore query.device) # type: ignore if self.cos_sin_cache.dtype != query.dtype: # type: ignore self.cos_sin_cache = self.cos_sin_cache.to( # type: ignore query.dtype) # type: ignore query, key = torch_npu.npu_mrope(positions.contiguous(), query.contiguous(), key.contiguous(), self.cos_sin_cache.contiguous(), self.head_size, mrope_section=mrope_section, rotary_mode='half') return query, key