# # Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. # Adapted from vllm/model_executor/models/qwen2_5_vl.py # Copyright 2023 The vLLM team. # # This file is a part of the vllm-ascend project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from typing import Callable, Iterable, Optional, Set, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F import torch_npu from einops import rearrange from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import ( Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig) from vllm.config import VllmConfig from vllm.distributed import parallel_state from vllm.distributed import utils as dist_utils from vllm.model_executor.layers.activation import get_act_and_mul_fn from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.model_loader.weight_utils import default_weight_loader from vllm.model_executor.models.interfaces import MultiModalEmbeddings from vllm.model_executor.models.qwen2_5_vl import ( Qwen2_5_VisionAttention, Qwen2_5_VisionBlock, Qwen2_5_VisionPatchEmbed, Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VisionTransformer, Qwen2_5_VLDummyInputsBuilder, Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLMultiModalProcessor, Qwen2_5_VLProcessingInfo) from vllm.model_executor.models.utils import maybe_prefix from vllm.multimodal import MULTIMODAL_REGISTRY from vllm_npu.utils import ACL_FORMAT_FRACTAL_ND, is_enable_nz MIN_PAD_SIZE = 64 # min_size to pad weight MAX_PAD_SIZE = 128 # max_size to pad weight class AscendQwen2_5_VisionAttention(Qwen2_5_VisionAttention): def __init__( self, embed_dim: int, num_heads: int, projection_size: int, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__( embed_dim, num_heads, projection_size, quant_config, prefix, ) self.embed_dim = embed_dim self.hidden_size_per_attention_head = dist_utils.divide( projection_size, num_heads) self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE: self.hidden_size_per_attention_head = MAX_PAD_SIZE def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]: # [s, b, 3 * head * head_dim] seq_len, bs, _ = qkv.shape # [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim] q, k, v = qkv.chunk(3, dim=2) # 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim] new_shape = (seq_len, bs, self.num_attention_heads_per_partition, self.hidden_size_per_attention_head) q, k, v = (x.view(*new_shape) for x in (q, k, v)) return q, k, v def forward( self, x: torch.Tensor, cu_seqlens: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor, ) -> torch.Tensor: # [s, b, c] --> [s, b, head * 3 * head_dim] x, _ = self.qkv(x) # [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim] q, k, v = self.split_qkv(x) batch_size = q.shape[1] q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v)) q = torch_npu.npu_rotary_mul(q, cos, sin) k = torch_npu.npu_rotary_mul(k, cos, sin) q, k, v = [ rearrange(x, "b s h d -> (b s) h d").contiguous() for x in (q, k, v) ] context_layer = torch.empty_like(q) # operator requires pta version >= 2.5.1 torch_npu._npu_flash_attention_unpad( query=q, key=k, value=v, seq_len=cu_seqlens, scale_value=self.origin_hidden_size_per_attention_head**-0.5, num_heads=self.num_attention_heads_per_partition, num_kv_heads=self.num_attention_heads_per_partition, out=context_layer) context_layer = rearrange(context_layer, "(b s) h d -> s b (h d)", b=batch_size).contiguous() output, _ = self.proj(context_layer) return output class AscendQwen2_5_VisionBlock(Qwen2_5_VisionBlock): def __init__( self, dim: int, num_heads: int, mlp_hidden_dim: int, act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu, norm_layer: Optional[Callable[[int], nn.Module]] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__(dim, num_heads, mlp_hidden_dim, act_fn, norm_layer, quant_config, prefix) self.attn = AscendQwen2_5_VisionAttention(embed_dim=dim, num_heads=num_heads, projection_size=dim, quant_config=quant_config, prefix=f"{prefix}.attn") def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor: x = x + self.attn( self.norm1(x), cu_seqlens=cu_seqlens, cos=cos, sin=sin) x = x + self.mlp(self.norm2(x)) return x class AscendQwen2_5_VisionPatchEmbed(Qwen2_5_VisionPatchEmbed): def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.matmul( self.proj.weight.data.view(self.hidden_size, -1).transpose(0, 1)) return x class AscendQwen2_5_VisionRotaryEmbedding(Qwen2_5_VisionRotaryEmbedding): def __init__(self, dim: int, theta: float = 10000.0) -> None: super().__init__(dim, theta) inv_freq = 1.0 / (theta **(torch.arange(0, dim, 2, dtype=torch.float) / dim)) self.inv_freq = inv_freq class AscendQwen2_5_VisionTransformer(Qwen2_5_VisionTransformer): def __init__( self, vision_config: Qwen2_5_VLVisionConfig, norm_eps: float = 1e-6, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", interleaved=False, ) -> None: super().__init__(vision_config, norm_eps, quant_config, prefix) norm_layer = partial(RMSNorm, eps=norm_eps) self.interleaved = interleaved self.enable_pad = False head_dim = self.hidden_size // self.num_heads self.rotary_pos_emb = AscendQwen2_5_VisionRotaryEmbedding(head_dim // 2) self.patch_embed = AscendQwen2_5_VisionPatchEmbed( patch_size=vision_config.patch_size, temporal_patch_size=vision_config.temporal_patch_size, in_channels=vision_config.in_channels, hidden_size=self.hidden_size, ) act_fn = get_act_and_mul_fn(vision_config.hidden_act) self.blocks = nn.ModuleList([ AscendQwen2_5_VisionBlock( dim=self.hidden_size, num_heads=self.num_heads, mlp_hidden_dim=vision_config.intermediate_size, act_fn=act_fn, norm_layer=norm_layer, quant_config=quant_config, prefix=f"{prefix}.blocks.{layer_idx}") for layer_idx in range(vision_config.depth) ]) self.tp_size = parallel_state.get_tensor_model_parallel_world_size() self.tp_rank = parallel_state.get_tensor_model_parallel_rank() self.hidden_size_per_attention_head = dist_utils.divide( self.hidden_size, self.num_heads) if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE: self.enable_pad = True self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head self.half_origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head // 2 self.half_pad_hidden_size_per_attention_head = ( MAX_PAD_SIZE - self.hidden_size_per_attention_head) // 2 self.hidden_size_per_attention_head = MAX_PAD_SIZE def cal_cos_sin(self, rotary_pos_emb): cos = rotary_pos_emb.cos() # [seqlen, rotary_dim / 2] sin = rotary_pos_emb.sin() if self.enable_pad: cos = torch.nn.functional.pad( cos, (0, self.half_pad_hidden_size_per_attention_head)) sin = torch.nn.functional.pad( sin, (0, self.half_pad_hidden_size_per_attention_head)) if not self.interleaved: cos_new = torch.cat((cos, cos), dim=-1) sin_new = torch.cat((sin, sin), dim=-1) else: cos_new = rearrange(torch.stack((cos, cos), dim=-1), "... d two -> ...(d two)", two=2) sin_new = rearrange(torch.stack((sin, sin), dim=-1), "... d two -> ...(d two)", two=2) cos_new = cos_new.reshape(1, -1, 1, self.hidden_size_per_attention_head) sin_new = sin_new.reshape(1, -1, 1, self.hidden_size_per_attention_head) return cos_new, sin_new def pad_qkv_bias(self, bias): first_half = bias.reshape( -1, 3, self.origin_hidden_size_per_attention_head )[:, :, :self.half_origin_hidden_size_per_attention_head] second_half = bias.reshape( -1, 3, self.origin_hidden_size_per_attention_head )[:, :, self.half_origin_hidden_size_per_attention_head:] first_half_padded = torch.nn.functional.pad( first_half, (0, self.half_pad_hidden_size_per_attention_head)) second_half_padded = torch.nn.functional.pad( second_half, (0, self.half_pad_hidden_size_per_attention_head)) bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2) bias_final = bias_padded.reshape(-1) return bias_final def pad_qkv_weight(self, data): qkv_weight_first_half = data.reshape( -1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size )[:, :, :self.half_origin_hidden_size_per_attention_head, :] qkv_weight_second_half = data.reshape( -1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size )[:, :, self.half_origin_hidden_size_per_attention_head:, :] qkv_weight_first_half_padded = torch.nn.functional.pad( qkv_weight_first_half, (0, 0, 0, self.half_pad_hidden_size_per_attention_head)) qkv_weight_second_half_padded = torch.nn.functional.pad( qkv_weight_second_half, (0, 0, 0, self.half_pad_hidden_size_per_attention_head)) qkv_weight_padded = torch.cat( [qkv_weight_first_half_padded, qkv_weight_second_half_padded], dim=2) qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size) if is_enable_nz(qkv_weight_final.dtype): qkv_weight_final_copy = torch.empty_like(qkv_weight_final).copy_( qkv_weight_final) qkv_weight_final_copy = torch_npu.npu_format_cast( qkv_weight_final_copy, ACL_FORMAT_FRACTAL_ND) return qkv_weight_final_copy return qkv_weight_final def pad_proj_weight(self, data): out_weight = torch.nn.functional.pad( data.reshape(self.hidden_size, -1, self.half_origin_hidden_size_per_attention_head), (0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape( self.hidden_size, -1) if is_enable_nz(out_weight.dtype): out_weight_copy = torch.empty_like(out_weight).copy_(out_weight) out_weight_copy = torch_npu.npu_format_cast( out_weight_copy, ACL_FORMAT_FRACTAL_ND) return out_weight_copy return out_weight def pad_qkv_weight_scale_offset(self, data): reshaped_data = data.reshape( -1, 3, self.origin_hidden_size_per_attention_head, 1) data1 = reshaped_data[:, :, :self. half_origin_hidden_size_per_attention_head, :] data2 = reshaped_data[:, :, self. half_origin_hidden_size_per_attention_head:, :] data1_paded = torch.nn.functional.pad( data1, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0, 0, 0, 0)) data2_paded = torch.nn.functional.pad( data2, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0, 0, 0, 0)) res = torch.cat([data1_paded, data2_paded], dim=2) res = res.reshape(-1, 1) return res def pad_qkv_deq_scale_quant_bias(self, data): reshaped_data = data.reshape( -1, 3, self.origin_hidden_size_per_attention_head) data1 = reshaped_data[:, :, :self. half_origin_hidden_size_per_attention_head] data2 = reshaped_data[:, :, self.half_origin_hidden_size_per_attention_head:] data1_paded = torch.nn.functional.pad( data1, (0, self.half_pad_hidden_size_per_attention_head)) data2_paded = torch.nn.functional.pad( data2, (0, self.half_pad_hidden_size_per_attention_head)) res = torch.cat([data1_paded, data2_paded], dim=2) res = res.reshape(-1) return res def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: stacked_params_mapping: list[tuple[str, str, Union[str, int]]] = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("attn.qkv.", "attn.q.", "q"), ("attn.qkv.", "attn.k.", "k"), ("attn.qkv.", "attn.v.", "v"), ("mlp.gate_up_proj.", "mlp.gate_proj.", 0), ("mlp.gate_up_proj.", "mlp.up_proj.", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: Set[str] = set() for name, loaded_weight in weights: for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) if self.enable_pad and shard_id == "v": if "attn.qkv.weight" in name: param.data = self.pad_qkv_weight(param.data) if "attn.qkv.bias" in name: param.data = self.pad_qkv_bias(param.data) break else: param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) if ("attn.proj.weight_scale" in name or "attn.proj.weight_offset" in name) and self.enable_pad: continue elif ("attn.proj.deq_scale" in name or "attn.proj.quant_bias" in name) and self.enable_pad: continue elif ("attn.qkv.weight_scale" in name or "attn.qkv.weight_offset" in name) and self.enable_pad: param.data = self.pad_qkv_weight_scale_offset(param.data) elif ("attn.qkv.deq_scale" in name or "attn.qkv.quant_bias" in name) and self.enable_pad: param.data = self.pad_qkv_deq_scale_quant_bias(param.data) elif ("attn.proj.weight" in name) and self.enable_pad: param.data = self.pad_proj_weight(param.data) elif ("attn.qkv.weight" in name) and self.enable_pad: param.data = self.pad_qkv_weight(param.data) elif ("attn.qkv.bias" in name) and self.enable_pad: param.data = self.pad_qkv_bias(param.data) loaded_params.add(name) return loaded_params def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor: pos_ids = [] for t, h, w in grid_thw: hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w) wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1) hpos_ids = hpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ).permute(0, 2, 1, 3).flatten() wpos_ids = wpos_ids.reshape( h // self.spatial_merge_size, self.spatial_merge_size, w // self.spatial_merge_size, self.spatial_merge_size, ).permute(0, 2, 1, 3).flatten() pos_ids.append( torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1)) pos_ids = torch.cat(pos_ids, dim=0) max_grid_size = grid_thw[:, 1:].max() rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size) rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1) return rotary_pos_emb def get_window_index(self, grid_thw): window_index: list = [] cu_window_seqlens: list = [0] window_index_id = 0 vit_merger_window_size = (self.window_size // self.spatial_merge_size // self.patch_size) for grid_t, grid_h, grid_w in grid_thw: llm_grid_h = grid_h // self.spatial_merge_size llm_grid_w = grid_w // self.spatial_merge_size index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape( grid_t, llm_grid_h, llm_grid_w) pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100) index_padded = index_padded.reshape(grid_t, num_windows_h, vit_merger_window_size, num_windows_w, vit_merger_window_size) index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape( grid_t, num_windows_h * num_windows_w, vit_merger_window_size, vit_merger_window_size) seqlens = (index_padded != -100).sum([2, 3]).reshape(-1) index_padded = index_padded.reshape(-1) index_new = index_padded[index_padded != -100] window_index.append(index_new + window_index_id) cu_seqlens_tmp = seqlens.cumsum( 0) * self.spatial_merge_unit + cu_window_seqlens[-1] cu_window_seqlens.extend(cu_seqlens_tmp.tolist()) window_index_id += (grid_t * llm_grid_h * llm_grid_w).item() window_index = torch.cat(window_index, dim=0) return window_index, cu_window_seqlens def forward( self, x: torch.Tensor, grid_thw: torch.Tensor, ) -> torch.Tensor: # compute cu_seqlens cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cpu().to(torch.int32) # patchify x = self.patch_embed(x) # compute position embedding rotary_pos_emb = self.rot_pos_emb(grid_thw) # windows attention window_index, cu_window_seqlens = self.get_window_index(grid_thw) cu_window_seqlens = torch.tensor( cu_window_seqlens, device=x.device, dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32) cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens) cu_window_seqlens = torch.diff(cu_window_seqlens).cpu().to(torch.int32) seq_len, _ = x.size() x = x.reshape(seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) x = x[window_index, :, :] x = x.reshape(seq_len, -1) rotary_pos_emb = rotary_pos_emb.reshape( seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1) rotary_pos_emb = rotary_pos_emb[window_index, :, :] rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1) cos, sin = self.cal_cos_sin(rotary_pos_emb) # transformers x = x.unsqueeze(1) for layer_num, blk in enumerate(self.blocks): if layer_num in self.fullatt_block_indexes: cu_seqlens_now = cu_seqlens else: cu_seqlens_now = cu_window_seqlens x = blk(x, cu_seqlens=cu_seqlens_now, cos=cos, sin=sin) # adapter x = self.merger(x) reverse_indices = torch.argsort(window_index) x = x[reverse_indices, :] return x @MULTIMODAL_REGISTRY.register_processor( Qwen2_5_VLMultiModalProcessor, info=Qwen2_5_VLProcessingInfo, dummy_inputs=Qwen2_5_VLDummyInputsBuilder) class AscendQwen2_5_VLForConditionalGeneration( Qwen2_5_VLForConditionalGeneration): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__(vllm_config=vllm_config, prefix=prefix) config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config self.visual = AscendQwen2_5_VisionTransformer( vision_config=config.vision_config, norm_eps=getattr(config, "rms_norm_eps", 1e-6), quant_config=quant_config, prefix=maybe_prefix(prefix, "visual"), ) def _process_image_input(self, image_input) -> tuple[torch.Tensor, ...]: grid_thw = image_input["image_grid_thw"] assert grid_thw.ndim == 2 if image_input["type"] == "image_embeds": image_embeds = image_input["image_embeds"].type(self.visual.dtype) else: pixel_values = image_input["pixel_values"].type(self.visual.dtype) image_embeds = self.visual(pixel_values, grid_thw=grid_thw) # Split concatenated embeddings for each image item. merge_size = self.visual.spatial_merge_size sizes = grid_thw.prod(-1) // merge_size // merge_size return image_embeds.split(sizes.tolist()) def _process_video_input(self, video_input) -> tuple[torch.Tensor, ...]: grid_thw = video_input["video_grid_thw"] assert grid_thw.ndim == 2 if video_input["type"] == "video_embeds": video_embeds = video_input["video_embeds"].type(self.visual.dtype) else: pixel_values_videos = video_input["pixel_values_videos"].type( self.visual.dtype) video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw) # Split concatenated embeddings for each video item. merge_size = self.visual.spatial_merge_size sizes = grid_thw.prod(-1) // merge_size // merge_size return video_embeds.split(sizes.tolist()) def _get_text_embeddings( self, input_ids: torch.Tensor, get_input_embeddings: Callable[[torch.Tensor], torch.Tensor], *, is_multimodal: Optional[torch.Tensor], handle_oov_mm_token: bool, ) -> torch.Tensor: if handle_oov_mm_token and is_multimodal is not None: is_text = ~is_multimodal text_embeds = get_input_embeddings(input_ids[is_text]) return torch.empty( (input_ids.shape[0], text_embeds.shape[1]), dtype=text_embeds.dtype, device=text_embeds.device, ).masked_scatter_(is_text.unsqueeze_(-1), text_embeds) return get_input_embeddings(input_ids) def get_input_embeddings( self, input_ids: torch.Tensor, multimodal_embeddings: Optional[MultiModalEmbeddings] = None, *, is_multimodal: Optional[torch.Tensor] = None, handle_oov_mm_token: bool = False, ) -> torch.Tensor: """ Apply token embeddings to `input_ids`. If `multimodal_embeddings` is passed, scatter them into `input_ids` according to the mask `is_multimodal`. In case the multi-modal token IDs exceed the vocabulary size of the language model, you can set `handle_oov_mm_token=False` to avoid calling the language model's `get_input_embeddings` method on those tokens. Note however that doing so increases memory usage as an additional buffer is needed to hold the input embeddings. """ from vllm.model_executor.models.utils import \ _merge_multimodal_embeddings inputs_embeds = self._get_text_embeddings( input_ids, self.get_language_model().get_input_embeddings, is_multimodal=is_multimodal, handle_oov_mm_token=handle_oov_mm_token, ) if multimodal_embeddings is None or len(multimodal_embeddings) == 0: return inputs_embeds if is_multimodal is None: raise ValueError( "`get_input_embeddings` now requires `is_multimodal` arg, " "please update your model runner according to " "https://github.com/vllm-project/vllm/pull/16229.") return _merge_multimodal_embeddings( inputs_embeds=inputs_embeds, is_multimodal=is_multimodal, multimodal_embeddings=multimodal_embeddings, )