# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import dataclasses from contextlib import ExitStack from dataclasses import dataclass from typing import Any, Callable, Optional from unittest.mock import patch import torch import torch_npu import vllm.envs as envs from vllm.compilation.counter import compilation_counter from vllm.compilation.cuda_graph import CUDAGraphOptions from vllm.compilation.monitor import validate_cudagraph_capturing_enabled from vllm.config import CUDAGraphMode, VllmConfig from vllm.forward_context import BatchDescriptor, get_forward_context from vllm.logger import logger from vllm.platforms import current_platform from ..utils import weak_ref_tensors @dataclasses.dataclass class ACLGraphEntry: batch_descriptor: BatchDescriptor aclgraph: Optional[torch.npu.NPUGraph] = None output: Optional[Any] = None # for aclgraph debugging, track the input addresses # during capture, and check if they are the same during replay input_addresses: Optional[list[int]] = None class ACLGraphWrapper: """Wraps a runnable to add acl graph capturing and replaying ability. And provide attribute access to the underlying `runnable` via `__getattr__`. The workflow of this wrapper in the aclgraph dispatching is as follows: 1. At initialization, a runtime mode is assigned to the wrapper (FULL or PIECEWISE). 2. At runtime, the wrapper receives a runtime_mode and a batch_descriptor(key) from the forward context and blindly trust them for aclgraph dispatching. 3. If runtime_mode is NONE or runtime_mode does not match the mode of the wrapper, just call the runnable directly. 4. Otherwise, i.e., the runtime_mode matches the mode of the wrapper, the wrapper will perform aclgraph capture(if key does not exist, create a new entry and cache it) or replay (if key exists in the cache). Note: ACLGraphWrapper does not store persistent buffers or copy any runtime inputs into that buffers for replay. We assume implementing them is done outside of the wrapper. That is because we do not make any assumption on the dynamic shape (batch size) of the runtime inputs, as a trade-off for staying orthogonal to compilation logic. Nevertheless, tracing and checking the input addresses to be consistent during replay is guaranteed when VLLM_LOGGING_LEVEL == "DEBUG". """ def __init__(self, runnable: Callable, vllm_config: VllmConfig, runtime_mode: CUDAGraphMode, graph_pool: Any = None, cudagraph_options: Optional[CUDAGraphOptions] = None): self.runnable = runnable self.vllm_config = vllm_config self.graph_pool = graph_pool self.runtime_mode = runtime_mode self.compilation_config = vllm_config.compilation_config self.first_run_finished = False self.is_debugging_mode = envs.VLLM_LOGGING_LEVEL == "DEBUG" # assert runtime_mode is not NONE(no aclgraph), otherwise, we don't # need to initialize a ACLGraphWrapper. assert self.runtime_mode != CUDAGraphMode.NONE if self.graph_pool is None: self.graph_pool = current_platform.get_global_graph_pool() if cudagraph_options is None: cudagraph_options = CUDAGraphOptions() self.aclgraph_options = cudagraph_options # the entries for different batch descriptors that we need to capture # aclgraphs for. self.concrete_aclgraph_entries: dict[BatchDescriptor, ACLGraphEntry]\ = {} def __getattr__(self, key: str): # allow accessing the attributes of the runnable. if hasattr(self.runnable, key): return getattr(self.runnable, key) raise AttributeError(f"Attribute {key} not exists in the runnable of " f"aclgraph wrapper: {self.runnable}") def unwrap(self) -> Callable: # in case we need to access the original runnable. return self.runnable def __call__(self, *args, **kwargs): forward_context = get_forward_context() batch_descriptor = forward_context.batch_descriptor aclgraph_runtime_mode = forward_context.cudagraph_runtime_mode if aclgraph_runtime_mode == CUDAGraphMode.NONE or \ aclgraph_runtime_mode != self.runtime_mode: # CUDAGraphMode.NONE could mean the profile run, a warmup run, or # running without aclgraphs. # We do not trigger capture/replay if the runtime mode is not # matches. This enables properly dispatching to the correct # CUDAGraphWrapper when nesting multiple instances with different # runtime modes. return self.runnable(*args, **kwargs) if batch_descriptor not in self.concrete_aclgraph_entries: # create a new entry for this batch descriptor self.concrete_aclgraph_entries[batch_descriptor] = \ ACLGraphEntry(batch_descriptor=batch_descriptor) entry = self.concrete_aclgraph_entries[batch_descriptor] if entry.aclgraph is None: if self.aclgraph_options.debug_log_enable: # Since we capture aclgraph for many different shapes and # capturing is fast, we don't need to log it for every # shape. E.g. we only log it for the first subgraph in # piecewise mode. logger.debug("Capturing a aclgraph on (%s,%s)", self.runtime_mode.name, entry.batch_descriptor) # validate that aclgraph capturing is legal at this point. validate_cudagraph_capturing_enabled() input_addresses = [ x.data_ptr() for x in args if isinstance(x, torch.Tensor) ] entry.input_addresses = input_addresses aclgraph = torch.npu.NPUGraph() with ExitStack() as stack: if self.aclgraph_options.gc_disable: # during every model forward for piecewise aclgraph # mode, we will capture many pieces of aclgraphs # (roughly one per layer). running gc again and again # across layers will make the aclgraph capture very slow. # therefore, we only run gc for the first graph, # and disable gc for the rest of the graphs. stack.enter_context(patch("gc.collect", lambda: None)) stack.enter_context( patch("torch.npu.empty_cache", lambda: None)) # mind-exploding: carefully manage the reference and memory. forward_context.capturing = True with torch.npu.graph(aclgraph, pool=self.graph_pool): # `output` is managed by pytorch's aclgraph pool output = self.runnable(*args, **kwargs) if self.aclgraph_options.weak_ref_output: # by converting it to weak ref, # the original `output` will immediately be released # to save memory. It is only safe to do this for # the last graph in piecewise aclgraph mode, because # the output of the last graph will not be used by # any other acl graph. output = weak_ref_tensors(output) # here we always use weak ref for the output # to save memory entry.output = weak_ref_tensors(output) entry.aclgraph = aclgraph compilation_counter.num_cudagraph_captured += 1 # important: we need to return the output, rather than # the weak ref of the output, so that pytorch can correctly # manage the memory during acl graph capture return output if self.is_debugging_mode: # check if the input addresses are the same new_input_addresses = [ x.data_ptr() for x in args if isinstance(x, torch.Tensor) ] assert new_input_addresses == entry.input_addresses, ( f"Input addresses for aclgraphs are different " f"during replay. Expected {entry.input_addresses}, " f"got {new_input_addresses}") logger.info_once("Replaying aclgraph") entry.aclgraph.replay() return entry.output def update_attn_params(update_stream, forward_context, runtime_shape, kv_transfer_config=None): graph_params = get_graph_params() # NOTE(Angazenn): By moving the npu-stream context ahead, # (see https://github.com/vllm-project/vllm-ascend/pull/3985) # we can reduce host overhead introduced by stream initialization. # However, we find that this might cause potential accuracy problems # with pd-disaggreagation. Therefore, this optimization is only enabled # without pd-disaggreagation. We are working on to solve this problem # directly int the future. if kv_transfer_config is not None: for key, param, handle, event in zip( forward_context.attn_metadata, graph_params.attn_params[runtime_shape], graph_params.handles[runtime_shape], graph_params.events[runtime_shape], ): ( query, key_cache, value_cache, num_kv_heads, num_heads, scale, block_table, seq_lens, output, ) = param seq_lens = forward_context.attn_metadata[key].seq_lens # When using FULL_DECODE_ONLY, there are some rare bugs for FULL_DECODE_ONLY # mode with GQA. This is triggered by getting workspace for _npu_paged_attention # in torch_npu. On some cases, _npu_paged_attention requires different workspace # among various seq_lens. So additional get_workspace is added here # to avoid such bugs. # TODO(Angazenn): we will remove this once _npu_paged_attention is fully # replaced by npu_fused_infer_attention_score which does not contain such bugs. workspace = torch_npu._npu_paged_attention_get_workspace( query=query, key_cache=key_cache, value_cache=value_cache, num_kv_heads=num_kv_heads, num_heads=num_heads, scale_value=scale, block_table=block_table, context_lens=seq_lens, out=output) with torch.npu.stream(update_stream): torch.npu.graph_task_update_begin(update_stream, handle) torch_npu._npu_paged_attention(query=query, key_cache=key_cache, value_cache=value_cache, num_kv_heads=num_kv_heads, num_heads=num_heads, scale_value=scale, block_table=block_table, context_lens=seq_lens, out=output, workspace=workspace) torch.npu.graph_task_update_end(update_stream) event.record(update_stream) else: with torch.npu.stream(update_stream): for key, param, handle, event in zip( forward_context.attn_metadata, graph_params.attn_params[runtime_shape], graph_params.handles[runtime_shape], graph_params.events[runtime_shape], ): ( query, key_cache, value_cache, num_kv_heads, num_heads, scale, block_table, seq_lens, output, ) = param seq_lens = forward_context.attn_metadata[key].seq_lens workspace = torch_npu._npu_paged_attention_get_workspace( query=query, key_cache=key_cache, value_cache=value_cache, num_kv_heads=num_kv_heads, num_heads=num_heads, scale_value=scale, block_table=block_table, context_lens=seq_lens, out=output) torch.npu.graph_task_update_begin(update_stream, handle) torch_npu._npu_paged_attention(query=query, key_cache=key_cache, value_cache=value_cache, num_kv_heads=num_kv_heads, num_heads=num_heads, scale_value=scale, block_table=block_table, context_lens=seq_lens, out=output, workspace=workspace) torch.npu.graph_task_update_end(update_stream) event.record(update_stream) def update_mla_attn_params(update_stream, forward_context, runtime_shape, speculative_config): graph_params = get_graph_params() # FIXME: Behold! We are using a temporary hack here to update the args # for each layer's attention op in the graph. with torch.npu.stream(update_stream): for key, param, handle, event in zip( forward_context.attn_metadata, graph_params.attn_params[runtime_shape], graph_params.handles[runtime_shape], graph_params.events[runtime_shape], ): (q_nope, k_nope, q_pe, k_pe, num_heads, num_kv_heads, input_layout, spec_attn_mask, sparse_mode, scale, block_table, block_size, seq_lens_list, actual_seq_lengths, attn_output, softmax_lse) = param seq_lens_list = forward_context.attn_metadata[ key].decode.seq_lens_list if speculative_config and speculative_config.method == "deepseek_mtp": actual_seq_lengths = forward_context.attn_metadata[ key].decode.actual_seq_lengths_q spec_multiple = speculative_config.num_speculative_tokens + 1 seq_lens_list = seq_lens_list + [0] * ( runtime_shape // spec_multiple - len(seq_lens_list)) actual_seq_lengths = [ spec_multiple * (i + 1) for i in range(runtime_shape // spec_multiple) ] else: seq_lens_list = seq_lens_list + [0] * (runtime_shape - len(seq_lens_list)) torch.npu.graph_task_update_begin(update_stream, handle) torch_npu.npu_fused_infer_attention_score.out( q_nope, k_nope, k_nope, query_rope=q_pe, key_rope=k_pe, num_heads=num_heads, num_key_value_heads=num_kv_heads, input_layout=input_layout, atten_mask=spec_attn_mask, sparse_mode=sparse_mode, scale=scale, antiquant_mode=0, antiquant_scale=None, block_table=block_table, block_size=block_size, actual_seq_lengths_kv=seq_lens_list, actual_seq_lengths=actual_seq_lengths, workspace=graph_params.workspaces.get(runtime_shape), out=[attn_output, softmax_lse]) torch.npu.graph_task_update_end(update_stream) event.record(update_stream) @dataclass class GraphParams: events: dict[int, list[torch.npu.ExternalEvent]] workspaces: dict[int, torch.Tensor] handles: dict[int, list[torch_npu._C._NPUTaskGroupHandle]] attn_params: dict[int, list[tuple]] _graph_params: Optional[GraphParams] = None def set_graph_params(aclgraph_capture_sizes: set[int]): global _graph_params if _graph_params is not None: raise ValueError("Graph parameters have already been set!") _graph_params = GraphParams( {size: [] for size in aclgraph_capture_sizes}, {size: None for size in aclgraph_capture_sizes}, {size: [] for size in aclgraph_capture_sizes}, {size: [] for size in aclgraph_capture_sizes}, ) def update_graph_params_workspaces(num_tokens: int, workspace: Any): global _graph_params if _graph_params is not None: _graph_params.workspaces[num_tokens] = workspace def get_graph_params(): return _graph_params