refactor: align attention with Huawei vllm-ascend - reshape_and_cache with kv_cache[0]/[1], _get_fia_params, npu_fused_infer_attention_score for chunked prefill, add actual_seq_lengths_q

This commit is contained in:
2026-02-10 20:06:52 +08:00
parent b8b4516b98
commit 810a2ef757

View File

@@ -141,6 +141,7 @@ class AscendMetadata:
query_start_loc: Optional[torch.Tensor] = None # (batch+1,) query_start_loc: Optional[torch.Tensor] = None # (batch+1,)
query_lens: Optional[torch.Tensor] = None query_lens: Optional[torch.Tensor] = None
max_query_len: Optional[int] = None max_query_len: Optional[int] = None
actual_seq_lengths_q: Optional[List[int]] = None # cumulative q positions
# KV cache mapping # KV cache mapping
block_tables: Optional[torch.Tensor] = None # (batch, max_blocks) block_tables: Optional[torch.Tensor] = None # (batch, max_blocks)
@@ -207,12 +208,15 @@ class AscendAttentionMetadataBuilder(AttentionMetadataBuilder[AscendMetadata]):
attn_state = AscendAttentionState.ChunkedPrefill attn_state = AscendAttentionState.ChunkedPrefill
# Build cumulative sequence lengths for query (for prefill) # Build cumulative sequence lengths for query (for prefill)
num_reqs = common_attn_metadata.num_reqs
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[:num_reqs + 1]
query_start_loc = common_attn_metadata.query_start_loc.to( query_start_loc = common_attn_metadata.query_start_loc.to(
dtype=torch.int64 dtype=torch.int64
) )
actual_seq_lengths_q = query_start_loc_cpu[1:].tolist()
seq_lens = common_attn_metadata.seq_lens seq_lens = common_attn_metadata.seq_lens
seq_lens_list = common_attn_metadata.seq_lens_cpu.tolist() seq_lens_list = common_attn_metadata.seq_lens_cpu[:num_reqs].tolist()
# Build attention mask for prefill (causal mask) # Build attention mask for prefill (causal mask)
attn_mask = None attn_mask = None
@@ -232,6 +236,7 @@ class AscendAttentionMetadataBuilder(AttentionMetadataBuilder[AscendMetadata]):
seq_lens_list=seq_lens_list, seq_lens_list=seq_lens_list,
query_start_loc=query_start_loc, query_start_loc=query_start_loc,
max_query_len=max_query_len, max_query_len=max_query_len,
actual_seq_lengths_q=actual_seq_lengths_q,
block_tables=common_attn_metadata.block_table_tensor, block_tables=common_attn_metadata.block_table_tensor,
slot_mapping=common_attn_metadata.slot_mapping, slot_mapping=common_attn_metadata.slot_mapping,
attn_mask=attn_mask, attn_mask=attn_mask,
@@ -297,15 +302,72 @@ class AscendAttentionBackendImpl(AttentionImpl):
self._key_cache: Optional[torch.Tensor] = None self._key_cache: Optional[torch.Tensor] = None
self._value_cache: Optional[torch.Tensor] = None self._value_cache: Optional[torch.Tensor] = None
def reshape_and_cache(
self,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: "AscendMetadata",
):
"""Update KV cache with new key/value tensors.
Matches Huawei vllm-ascend: splits kv_cache[0]/[1] and writes via
slot_mapping indices.
"""
if kv_cache.numel() > 0:
if self._key_cache is None:
self._key_cache, self._value_cache = kv_cache[0], kv_cache[1]
slots = attn_metadata.slot_mapping
key_to_cache = key[:attn_metadata.num_actual_tokens]
val_to_cache = value[:attn_metadata.num_actual_tokens]
# Use pure-PyTorch indexing (ATB reshape_and_cache may fail
# depending on environment; this is functionally identical)
block_size = self._key_cache.shape[1]
block_idx = slots // block_size
block_offset = slots % block_size
self._key_cache[block_idx, block_offset] = key_to_cache
self._value_cache[block_idx, block_offset] = val_to_cache
return key, value
# -----------------------------------------------------------------
# Forward dispatch (matches Huawei vllm-ascend structure)
# -----------------------------------------------------------------
def _get_fia_params(
self,
key: torch.Tensor,
value: torch.Tensor,
attn_metadata: "AscendMetadata",
):
"""Prepare key, value, block_size, block_table and kv_seq_lens
for npu_fused_infer_attention_score, following Huawei's approach."""
if attn_metadata.attn_state == AscendAttentionState.PrefillNoCache:
block_size = 128
block_table = None
actual_seq_lengths_kv = attn_metadata.query_start_loc[1:].tolist()
else:
# DecodeOnly / PrefillCacheHit / ChunkedPrefill — read from cache
num_block, block_size, _, _ = self._key_cache.shape
key = self._key_cache.view(num_block, block_size, -1)
value = self._value_cache.view(num_block, block_size, -1)
block_table = attn_metadata.block_tables
actual_seq_lengths_kv = attn_metadata.seq_lens_list
return key, value, block_size, block_table, actual_seq_lengths_kv
def forward( def forward(
self, self,
layer: nn.Module, layer: nn.Module,
query: torch.Tensor, query: torch.Tensor,
key: torch.Tensor, key: torch.Tensor,
value: torch.Tensor, value: torch.Tensor,
kv_cache: Tuple[torch.Tensor, ...], kv_cache: torch.Tensor,
attn_metadata: AscendMetadata, attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None, output: Optional[torch.Tensor] = None,
output_scale: Optional[torch.Tensor] = None,
output_block_scale: Optional[torch.Tensor] = None,
) -> torch.Tensor: ) -> torch.Tensor:
"""Forward pass with Ascend attention. """Forward pass with Ascend attention.
@@ -313,8 +375,8 @@ class AscendAttentionBackendImpl(AttentionImpl):
query: (num_tokens, num_heads * head_size) query: (num_tokens, num_heads * head_size)
key: (num_tokens, num_kv_heads * head_size) key: (num_tokens, num_kv_heads * head_size)
value: (num_tokens, num_kv_heads * head_size) value: (num_tokens, num_kv_heads * head_size)
kv_cache: (key_cache, value_cache) each kv_cache: tensor of shape
(num_blocks, block_size, num_kv_heads, head_size) (2, num_blocks, block_size, num_kv_heads, head_size)
attn_metadata: AscendMetadata for this forward call. attn_metadata: AscendMetadata for this forward call.
Returns: Returns:
@@ -322,48 +384,24 @@ class AscendAttentionBackendImpl(AttentionImpl):
""" """
import torch_npu # noqa: F401 import torch_npu # noqa: F401
assert output is not None, "Output tensor must be provided."
num_tokens = query.shape[0] num_tokens = query.shape[0]
if output is None:
output = torch.empty(
num_tokens,
self.num_heads,
self.head_size,
dtype=query.dtype,
device=query.device,
)
if attn_metadata is None: if attn_metadata is None:
return output.view(num_tokens, self.hidden_size).fill_(0) return output.fill_(0)
num_actual_tokens = attn_metadata.num_actual_tokens # Reshape Q/K/V to TND (tokens, heads, head_dim)
# Reshape Q/K/V to BSH (tokens, heads, head_dim)
query = query.view(-1, self.num_heads, self.head_size) query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size) key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size).contiguous() value = value.view(-1, self.num_kv_heads, self.head_size)
# ----------------------------------------------------------
# Step 1: Update KV cache # Step 1: Update KV cache
# ---------------------------------------------------------- if key is not None and value is not None:
if kv_cache is not None and len(kv_cache.shape) > 1: key, value = self.reshape_and_cache(
if self._key_cache is None: key, value, kv_cache, attn_metadata
self._key_cache, self._value_cache = kv_cache.unbind(0) )
slots = attn_metadata.slot_mapping
# Pure PyTorch reshape_and_cache (avoids ATB dependency)
key_to_cache = key[:num_actual_tokens]
val_to_cache = value[:num_actual_tokens]
block_size = self._key_cache.shape[1]
block_idx = slots // block_size
block_offset = slots % block_size
self._key_cache[block_idx, block_offset] = key_to_cache
self._value_cache[block_idx, block_offset] = val_to_cache
# ----------------------------------------------------------
# Step 2: Compute attention # Step 2: Compute attention
# ----------------------------------------------------------
if attn_metadata.attn_state == AscendAttentionState.DecodeOnly: if attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
output = self._forward_decode( output = self._forward_decode(
query, attn_metadata, output, num_tokens query, attn_metadata, output, num_tokens
@@ -373,15 +411,15 @@ class AscendAttentionBackendImpl(AttentionImpl):
query, key, value, attn_metadata, output, num_tokens query, key, value, attn_metadata, output, num_tokens
) )
else: else:
# ChunkedPrefill or PrefillCacheHit # ChunkedPrefill or PrefillCacheHit — use FIA with block tables
output = self._forward_chunked_prefill( output = self._forward_fused_infer_attention(
query, key, value, attn_metadata, output, num_tokens query, key, value, attn_metadata, output
) )
return output.view(num_tokens, self.hidden_size) return output
# ----------------------------------------------------------------- # -----------------------------------------------------------------
# Decode path — paged attention via npu_incre_flash_attention # Decode path — paged attention (matches Huawei _npu_paged_attention)
# ----------------------------------------------------------------- # -----------------------------------------------------------------
def _forward_decode( def _forward_decode(
@@ -391,13 +429,9 @@ class AscendAttentionBackendImpl(AttentionImpl):
output: torch.Tensor, output: torch.Tensor,
num_tokens: int, num_tokens: int,
) -> torch.Tensor: ) -> torch.Tensor:
"""Decode-only attention using incremental flash attention.""" """Decode-only via npu_incre_flash_attention."""
import torch_npu # noqa: F401 import torch_npu # noqa: F401
# npu_incre_flash_attention expects:
# query: (batch, 1, num_heads, head_size)
# key_cache: (num_blocks, block_size, num_kv_heads, head_size)
# value_cache: (num_blocks, block_size, num_kv_heads, head_size)
q = query[:num_tokens].unsqueeze(1) # (B, 1, H, D) q = query[:num_tokens].unsqueeze(1) # (B, 1, H, D)
attn_out = torch_npu.npu_incre_flash_attention( attn_out = torch_npu.npu_incre_flash_attention(
@@ -417,7 +451,7 @@ class AscendAttentionBackendImpl(AttentionImpl):
return output return output
# ----------------------------------------------------------------- # -----------------------------------------------------------------
# Prefill without KV cache (first token, no paging) # Prefill without KV cache
# ----------------------------------------------------------------- # -----------------------------------------------------------------
def _forward_prefill_no_cache( def _forward_prefill_no_cache(
@@ -453,127 +487,45 @@ class AscendAttentionBackendImpl(AttentionImpl):
return output return output
# ----------------------------------------------------------------- # -----------------------------------------------------------------
# Chunked prefill — mixed prefill+decode # Fused Infer Attention (prefill with cache / chunked prefill)
# Matches Huawei's forward_fused_infer_attention approach
# ----------------------------------------------------------------- # -----------------------------------------------------------------
def _forward_chunked_prefill( def _forward_fused_infer_attention(
self, self,
query: torch.Tensor, query: torch.Tensor,
key: torch.Tensor, key: torch.Tensor,
value: torch.Tensor, value: torch.Tensor,
attn_metadata: AscendMetadata, attn_metadata: AscendMetadata,
output: torch.Tensor, output: torch.Tensor,
num_tokens: int,
) -> torch.Tensor: ) -> torch.Tensor:
"""Chunked prefill using npu_fusion_attention with paged KV cache.""" """Use npu_fused_infer_attention_score with TND layout and block
tables — the same approach Huawei uses for chunked prefill and
cache-hit prefill."""
import torch_npu # noqa: F401 import torch_npu # noqa: F401
# Split batch into decodes and prefills based on query length key, value, block_size, block_table, actual_seq_lengths_kv = (
query_start_loc = attn_metadata.query_start_loc self._get_fia_params(key, value, attn_metadata)
seq_lens = attn_metadata.seq_lens )
num_tokens = attn_metadata.actual_seq_lengths_q[-1]
query = query[:num_tokens]
# Compute per-request query lengths attn_output, _ = torch_npu.npu_fused_infer_attention_score(
query_lens = query_start_loc[1:] - query_start_loc[:-1] query=query,
num_requests = len(query_lens) key=key,
value=value,
# Separate decode (query_len == 1) and prefill requests atten_mask=attn_metadata.attn_mask,
decode_mask = query_lens == 1 block_table=block_table,
prefill_mask = ~decode_mask input_layout="TND",
num_decodes = decode_mask.sum().item() block_size=block_size,
actual_seq_lengths=attn_metadata.actual_seq_lengths_q,
# Process decode tokens actual_seq_lengths_kv=actual_seq_lengths_kv,
if num_decodes > 0 and self._key_cache is not None:
decode_indices = torch.where(decode_mask)[0]
decode_query = query[query_start_loc[decode_indices]]
decode_block_tables = attn_metadata.block_tables[decode_indices]
decode_seq_lens = seq_lens[decode_indices].tolist()
decode_q = decode_query.unsqueeze(1) # (B_decode, 1, H, D)
decode_out = torch_npu.npu_incre_flash_attention(
decode_q,
self._key_cache,
self._value_cache,
num_heads=self.num_heads,
num_key_value_heads=self.num_kv_heads, num_key_value_heads=self.num_kv_heads,
scale_value=self.scale, num_heads=self.num_heads,
block_table=decode_block_tables,
actual_seq_lengths=decode_seq_lens,
block_size=self._key_cache.shape[1],
input_layout="BNSD",
)
for i, idx in enumerate(decode_indices):
token_pos = query_start_loc[idx].item()
output[token_pos] = decode_out[i].squeeze(0)
# Process prefill tokens
if prefill_mask.any():
prefill_indices = torch.where(prefill_mask)[0]
for idx in prefill_indices:
start = query_start_loc[idx].item()
end = query_start_loc[idx + 1].item()
q_len = end - start
kv_len = seq_lens[idx].item()
q = query[start:end] # (q_len, H, D)
# Use npu_fusion_attention for this single prefill request
# Build a causal mask for this sequence
causal_mask = torch.ones(
kv_len, kv_len, dtype=torch.bool, device=query.device
).triu_(diagonal=1)
# For chunked prefill, key/value come from the cache
if self._key_cache is not None and kv_len > q_len:
# Gather KV from paged cache for this request
block_table = attn_metadata.block_tables[idx]
num_blocks_needed = (kv_len + self._key_cache.shape[1] - 1) \
// self._key_cache.shape[1]
block_ids = block_table[:num_blocks_needed]
# Gather KV from block cache
gathered_k = self._key_cache[block_ids].reshape(
-1, self.num_kv_heads, self.head_size
)[:kv_len]
gathered_v = self._value_cache[block_ids].reshape(
-1, self.num_kv_heads, self.head_size
)[:kv_len]
# Only last q_len rows of the mask
causal_mask = causal_mask[kv_len - q_len : kv_len, :kv_len]
attn_out = torch_npu.npu_fusion_attention(
q.unsqueeze(0), # (1, q_len, H, D) — BSH layout
gathered_k.unsqueeze(0),
gathered_v.unsqueeze(0),
head_num=self.num_heads,
input_layout="BSND",
scale=self.scale, scale=self.scale,
sparse_mode=0, sparse_mode=3,
atten_mask=causal_mask.unsqueeze(0),
pre_tockens=kv_len,
next_tockens=0,
) )
output[start:end] = attn_out[0].squeeze(0)
else:
# Full self-attention (no prior cache)
k = key[start:end]
v = value[start:end]
causal_mask = causal_mask[:q_len, :q_len]
attn_out = torch_npu.npu_fusion_attention(
q.unsqueeze(0),
k.unsqueeze(0),
v.unsqueeze(0),
head_num=self.num_heads,
input_layout="BSND",
scale=self.scale,
sparse_mode=0,
atten_mask=causal_mask.unsqueeze(0),
pre_tockens=q_len,
next_tockens=0,
)
output[start:end] = attn_out[0].squeeze(0)
attn_output = attn_output.view(num_tokens, self.num_heads, self.head_size)
output[:num_tokens] = attn_output[:num_tokens]
return output return output