mirror of
https://github.com/handsomezhuzhu/vllm-npu-plugin.git
synced 2026-02-20 11:42:30 +00:00
refactor: align attention with Huawei vllm-ascend - reshape_and_cache with kv_cache[0]/[1], _get_fia_params, npu_fused_infer_attention_score for chunked prefill, add actual_seq_lengths_q
This commit is contained in:
@@ -141,6 +141,7 @@ class AscendMetadata:
|
||||
query_start_loc: Optional[torch.Tensor] = None # (batch+1,)
|
||||
query_lens: Optional[torch.Tensor] = None
|
||||
max_query_len: Optional[int] = None
|
||||
actual_seq_lengths_q: Optional[List[int]] = None # cumulative q positions
|
||||
|
||||
# KV cache mapping
|
||||
block_tables: Optional[torch.Tensor] = None # (batch, max_blocks)
|
||||
@@ -207,12 +208,15 @@ class AscendAttentionMetadataBuilder(AttentionMetadataBuilder[AscendMetadata]):
|
||||
attn_state = AscendAttentionState.ChunkedPrefill
|
||||
|
||||
# Build cumulative sequence lengths for query (for prefill)
|
||||
num_reqs = common_attn_metadata.num_reqs
|
||||
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[:num_reqs + 1]
|
||||
query_start_loc = common_attn_metadata.query_start_loc.to(
|
||||
dtype=torch.int64
|
||||
)
|
||||
actual_seq_lengths_q = query_start_loc_cpu[1:].tolist()
|
||||
|
||||
seq_lens = common_attn_metadata.seq_lens
|
||||
seq_lens_list = common_attn_metadata.seq_lens_cpu.tolist()
|
||||
seq_lens_list = common_attn_metadata.seq_lens_cpu[:num_reqs].tolist()
|
||||
|
||||
# Build attention mask for prefill (causal mask)
|
||||
attn_mask = None
|
||||
@@ -232,6 +236,7 @@ class AscendAttentionMetadataBuilder(AttentionMetadataBuilder[AscendMetadata]):
|
||||
seq_lens_list=seq_lens_list,
|
||||
query_start_loc=query_start_loc,
|
||||
max_query_len=max_query_len,
|
||||
actual_seq_lengths_q=actual_seq_lengths_q,
|
||||
block_tables=common_attn_metadata.block_table_tensor,
|
||||
slot_mapping=common_attn_metadata.slot_mapping,
|
||||
attn_mask=attn_mask,
|
||||
@@ -297,15 +302,72 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
self._key_cache: Optional[torch.Tensor] = None
|
||||
self._value_cache: Optional[torch.Tensor] = None
|
||||
|
||||
def reshape_and_cache(
|
||||
self,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: "AscendMetadata",
|
||||
):
|
||||
"""Update KV cache with new key/value tensors.
|
||||
|
||||
Matches Huawei vllm-ascend: splits kv_cache[0]/[1] and writes via
|
||||
slot_mapping indices.
|
||||
"""
|
||||
if kv_cache.numel() > 0:
|
||||
if self._key_cache is None:
|
||||
self._key_cache, self._value_cache = kv_cache[0], kv_cache[1]
|
||||
|
||||
slots = attn_metadata.slot_mapping
|
||||
key_to_cache = key[:attn_metadata.num_actual_tokens]
|
||||
val_to_cache = value[:attn_metadata.num_actual_tokens]
|
||||
|
||||
# Use pure-PyTorch indexing (ATB reshape_and_cache may fail
|
||||
# depending on environment; this is functionally identical)
|
||||
block_size = self._key_cache.shape[1]
|
||||
block_idx = slots // block_size
|
||||
block_offset = slots % block_size
|
||||
self._key_cache[block_idx, block_offset] = key_to_cache
|
||||
self._value_cache[block_idx, block_offset] = val_to_cache
|
||||
|
||||
return key, value
|
||||
|
||||
# -----------------------------------------------------------------
|
||||
# Forward dispatch (matches Huawei vllm-ascend structure)
|
||||
# -----------------------------------------------------------------
|
||||
|
||||
def _get_fia_params(
|
||||
self,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_metadata: "AscendMetadata",
|
||||
):
|
||||
"""Prepare key, value, block_size, block_table and kv_seq_lens
|
||||
for npu_fused_infer_attention_score, following Huawei's approach."""
|
||||
if attn_metadata.attn_state == AscendAttentionState.PrefillNoCache:
|
||||
block_size = 128
|
||||
block_table = None
|
||||
actual_seq_lengths_kv = attn_metadata.query_start_loc[1:].tolist()
|
||||
else:
|
||||
# DecodeOnly / PrefillCacheHit / ChunkedPrefill — read from cache
|
||||
num_block, block_size, _, _ = self._key_cache.shape
|
||||
key = self._key_cache.view(num_block, block_size, -1)
|
||||
value = self._value_cache.view(num_block, block_size, -1)
|
||||
block_table = attn_metadata.block_tables
|
||||
actual_seq_lengths_kv = attn_metadata.seq_lens_list
|
||||
return key, value, block_size, block_table, actual_seq_lengths_kv
|
||||
|
||||
def forward(
|
||||
self,
|
||||
layer: nn.Module,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, ...],
|
||||
kv_cache: torch.Tensor,
|
||||
attn_metadata: AscendMetadata,
|
||||
output: Optional[torch.Tensor] = None,
|
||||
output_scale: Optional[torch.Tensor] = None,
|
||||
output_block_scale: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
"""Forward pass with Ascend attention.
|
||||
|
||||
@@ -313,8 +375,8 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
query: (num_tokens, num_heads * head_size)
|
||||
key: (num_tokens, num_kv_heads * head_size)
|
||||
value: (num_tokens, num_kv_heads * head_size)
|
||||
kv_cache: (key_cache, value_cache) each
|
||||
(num_blocks, block_size, num_kv_heads, head_size)
|
||||
kv_cache: tensor of shape
|
||||
(2, num_blocks, block_size, num_kv_heads, head_size)
|
||||
attn_metadata: AscendMetadata for this forward call.
|
||||
|
||||
Returns:
|
||||
@@ -322,48 +384,24 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
"""
|
||||
import torch_npu # noqa: F401
|
||||
|
||||
assert output is not None, "Output tensor must be provided."
|
||||
num_tokens = query.shape[0]
|
||||
|
||||
if output is None:
|
||||
output = torch.empty(
|
||||
num_tokens,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
dtype=query.dtype,
|
||||
device=query.device,
|
||||
)
|
||||
|
||||
if attn_metadata is None:
|
||||
return output.view(num_tokens, self.hidden_size).fill_(0)
|
||||
return output.fill_(0)
|
||||
|
||||
num_actual_tokens = attn_metadata.num_actual_tokens
|
||||
|
||||
# Reshape Q/K/V to BSH (tokens, heads, head_dim)
|
||||
# Reshape Q/K/V to TND (tokens, heads, head_dim)
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
key = key.view(-1, self.num_kv_heads, self.head_size)
|
||||
value = value.view(-1, self.num_kv_heads, self.head_size).contiguous()
|
||||
value = value.view(-1, self.num_kv_heads, self.head_size)
|
||||
|
||||
# ----------------------------------------------------------
|
||||
# Step 1: Update KV cache
|
||||
# ----------------------------------------------------------
|
||||
if kv_cache is not None and len(kv_cache.shape) > 1:
|
||||
if self._key_cache is None:
|
||||
self._key_cache, self._value_cache = kv_cache.unbind(0)
|
||||
if key is not None and value is not None:
|
||||
key, value = self.reshape_and_cache(
|
||||
key, value, kv_cache, attn_metadata
|
||||
)
|
||||
|
||||
slots = attn_metadata.slot_mapping
|
||||
# Pure PyTorch reshape_and_cache (avoids ATB dependency)
|
||||
key_to_cache = key[:num_actual_tokens]
|
||||
val_to_cache = value[:num_actual_tokens]
|
||||
block_size = self._key_cache.shape[1]
|
||||
block_idx = slots // block_size
|
||||
block_offset = slots % block_size
|
||||
self._key_cache[block_idx, block_offset] = key_to_cache
|
||||
self._value_cache[block_idx, block_offset] = val_to_cache
|
||||
|
||||
|
||||
# ----------------------------------------------------------
|
||||
# Step 2: Compute attention
|
||||
# ----------------------------------------------------------
|
||||
if attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
|
||||
output = self._forward_decode(
|
||||
query, attn_metadata, output, num_tokens
|
||||
@@ -373,15 +411,15 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
query, key, value, attn_metadata, output, num_tokens
|
||||
)
|
||||
else:
|
||||
# ChunkedPrefill or PrefillCacheHit
|
||||
output = self._forward_chunked_prefill(
|
||||
query, key, value, attn_metadata, output, num_tokens
|
||||
# ChunkedPrefill or PrefillCacheHit — use FIA with block tables
|
||||
output = self._forward_fused_infer_attention(
|
||||
query, key, value, attn_metadata, output
|
||||
)
|
||||
|
||||
return output.view(num_tokens, self.hidden_size)
|
||||
return output
|
||||
|
||||
# -----------------------------------------------------------------
|
||||
# Decode path — paged attention via npu_incre_flash_attention
|
||||
# Decode path — paged attention (matches Huawei _npu_paged_attention)
|
||||
# -----------------------------------------------------------------
|
||||
|
||||
def _forward_decode(
|
||||
@@ -391,13 +429,9 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
output: torch.Tensor,
|
||||
num_tokens: int,
|
||||
) -> torch.Tensor:
|
||||
"""Decode-only attention using incremental flash attention."""
|
||||
"""Decode-only via npu_incre_flash_attention."""
|
||||
import torch_npu # noqa: F401
|
||||
|
||||
# npu_incre_flash_attention expects:
|
||||
# query: (batch, 1, num_heads, head_size)
|
||||
# key_cache: (num_blocks, block_size, num_kv_heads, head_size)
|
||||
# value_cache: (num_blocks, block_size, num_kv_heads, head_size)
|
||||
q = query[:num_tokens].unsqueeze(1) # (B, 1, H, D)
|
||||
|
||||
attn_out = torch_npu.npu_incre_flash_attention(
|
||||
@@ -417,7 +451,7 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
return output
|
||||
|
||||
# -----------------------------------------------------------------
|
||||
# Prefill without KV cache (first token, no paging)
|
||||
# Prefill without KV cache
|
||||
# -----------------------------------------------------------------
|
||||
|
||||
def _forward_prefill_no_cache(
|
||||
@@ -453,127 +487,45 @@ class AscendAttentionBackendImpl(AttentionImpl):
|
||||
return output
|
||||
|
||||
# -----------------------------------------------------------------
|
||||
# Chunked prefill — mixed prefill+decode
|
||||
# Fused Infer Attention (prefill with cache / chunked prefill)
|
||||
# Matches Huawei's forward_fused_infer_attention approach
|
||||
# -----------------------------------------------------------------
|
||||
|
||||
def _forward_chunked_prefill(
|
||||
def _forward_fused_infer_attention(
|
||||
self,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_metadata: AscendMetadata,
|
||||
output: torch.Tensor,
|
||||
num_tokens: int,
|
||||
) -> torch.Tensor:
|
||||
"""Chunked prefill using npu_fusion_attention with paged KV cache."""
|
||||
"""Use npu_fused_infer_attention_score with TND layout and block
|
||||
tables — the same approach Huawei uses for chunked prefill and
|
||||
cache-hit prefill."""
|
||||
import torch_npu # noqa: F401
|
||||
|
||||
# Split batch into decodes and prefills based on query length
|
||||
query_start_loc = attn_metadata.query_start_loc
|
||||
seq_lens = attn_metadata.seq_lens
|
||||
key, value, block_size, block_table, actual_seq_lengths_kv = (
|
||||
self._get_fia_params(key, value, attn_metadata)
|
||||
)
|
||||
num_tokens = attn_metadata.actual_seq_lengths_q[-1]
|
||||
query = query[:num_tokens]
|
||||
|
||||
# Compute per-request query lengths
|
||||
query_lens = query_start_loc[1:] - query_start_loc[:-1]
|
||||
num_requests = len(query_lens)
|
||||
|
||||
# Separate decode (query_len == 1) and prefill requests
|
||||
decode_mask = query_lens == 1
|
||||
prefill_mask = ~decode_mask
|
||||
num_decodes = decode_mask.sum().item()
|
||||
|
||||
# Process decode tokens
|
||||
if num_decodes > 0 and self._key_cache is not None:
|
||||
decode_indices = torch.where(decode_mask)[0]
|
||||
decode_query = query[query_start_loc[decode_indices]]
|
||||
decode_block_tables = attn_metadata.block_tables[decode_indices]
|
||||
decode_seq_lens = seq_lens[decode_indices].tolist()
|
||||
|
||||
decode_q = decode_query.unsqueeze(1) # (B_decode, 1, H, D)
|
||||
|
||||
decode_out = torch_npu.npu_incre_flash_attention(
|
||||
decode_q,
|
||||
self._key_cache,
|
||||
self._value_cache,
|
||||
num_heads=self.num_heads,
|
||||
num_key_value_heads=self.num_kv_heads,
|
||||
scale_value=self.scale,
|
||||
block_table=decode_block_tables,
|
||||
actual_seq_lengths=decode_seq_lens,
|
||||
block_size=self._key_cache.shape[1],
|
||||
input_layout="BNSD",
|
||||
)
|
||||
|
||||
for i, idx in enumerate(decode_indices):
|
||||
token_pos = query_start_loc[idx].item()
|
||||
output[token_pos] = decode_out[i].squeeze(0)
|
||||
|
||||
# Process prefill tokens
|
||||
if prefill_mask.any():
|
||||
prefill_indices = torch.where(prefill_mask)[0]
|
||||
for idx in prefill_indices:
|
||||
start = query_start_loc[idx].item()
|
||||
end = query_start_loc[idx + 1].item()
|
||||
q_len = end - start
|
||||
kv_len = seq_lens[idx].item()
|
||||
|
||||
q = query[start:end] # (q_len, H, D)
|
||||
|
||||
# Use npu_fusion_attention for this single prefill request
|
||||
# Build a causal mask for this sequence
|
||||
causal_mask = torch.ones(
|
||||
kv_len, kv_len, dtype=torch.bool, device=query.device
|
||||
).triu_(diagonal=1)
|
||||
|
||||
# For chunked prefill, key/value come from the cache
|
||||
if self._key_cache is not None and kv_len > q_len:
|
||||
# Gather KV from paged cache for this request
|
||||
block_table = attn_metadata.block_tables[idx]
|
||||
num_blocks_needed = (kv_len + self._key_cache.shape[1] - 1) \
|
||||
// self._key_cache.shape[1]
|
||||
block_ids = block_table[:num_blocks_needed]
|
||||
|
||||
# Gather KV from block cache
|
||||
gathered_k = self._key_cache[block_ids].reshape(
|
||||
-1, self.num_kv_heads, self.head_size
|
||||
)[:kv_len]
|
||||
gathered_v = self._value_cache[block_ids].reshape(
|
||||
-1, self.num_kv_heads, self.head_size
|
||||
)[:kv_len]
|
||||
|
||||
# Only last q_len rows of the mask
|
||||
causal_mask = causal_mask[kv_len - q_len : kv_len, :kv_len]
|
||||
|
||||
attn_out = torch_npu.npu_fusion_attention(
|
||||
q.unsqueeze(0), # (1, q_len, H, D) — BSH layout
|
||||
gathered_k.unsqueeze(0),
|
||||
gathered_v.unsqueeze(0),
|
||||
head_num=self.num_heads,
|
||||
input_layout="BSND",
|
||||
scale=self.scale,
|
||||
sparse_mode=0,
|
||||
atten_mask=causal_mask.unsqueeze(0),
|
||||
pre_tockens=kv_len,
|
||||
next_tockens=0,
|
||||
)
|
||||
output[start:end] = attn_out[0].squeeze(0)
|
||||
else:
|
||||
# Full self-attention (no prior cache)
|
||||
k = key[start:end]
|
||||
v = value[start:end]
|
||||
causal_mask = causal_mask[:q_len, :q_len]
|
||||
|
||||
attn_out = torch_npu.npu_fusion_attention(
|
||||
q.unsqueeze(0),
|
||||
k.unsqueeze(0),
|
||||
v.unsqueeze(0),
|
||||
head_num=self.num_heads,
|
||||
input_layout="BSND",
|
||||
scale=self.scale,
|
||||
sparse_mode=0,
|
||||
atten_mask=causal_mask.unsqueeze(0),
|
||||
pre_tockens=q_len,
|
||||
next_tockens=0,
|
||||
)
|
||||
output[start:end] = attn_out[0].squeeze(0)
|
||||
attn_output, _ = torch_npu.npu_fused_infer_attention_score(
|
||||
query=query,
|
||||
key=key,
|
||||
value=value,
|
||||
atten_mask=attn_metadata.attn_mask,
|
||||
block_table=block_table,
|
||||
input_layout="TND",
|
||||
block_size=block_size,
|
||||
actual_seq_lengths=attn_metadata.actual_seq_lengths_q,
|
||||
actual_seq_lengths_kv=actual_seq_lengths_kv,
|
||||
num_key_value_heads=self.num_kv_heads,
|
||||
num_heads=self.num_heads,
|
||||
scale=self.scale,
|
||||
sparse_mode=3,
|
||||
)
|
||||
|
||||
attn_output = attn_output.view(num_tokens, self.num_heads, self.head_size)
|
||||
output[:num_tokens] = attn_output[:num_tokens]
|
||||
return output
|
||||
|
||||
Reference in New Issue
Block a user