This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -1,229 +1,369 @@
"""
NPUWorker — Ascend NPU worker for vLLM v1.
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_worker.py
#
Extends the GPU Worker to run on Ascend NPU devices, replacing CUDA
APIs with ``torch.npu`` / ``torch_npu`` equivalents for device
management, memory profiling, and distributed initialization.
"""
import gc
import os
from typing import TYPE_CHECKING, Any, Optional
import copy
from typing import Optional, Union
import torch
import torch.nn as nn
import torch_npu
import vllm.envs as envs_vllm
from torch_npu.op_plugin.atb._atb_ops import _register_atb_extensions
from torch_npu.profiler import dynamic_profile as dp
from vllm.config import VllmConfig
from vllm.distributed import (
ensure_model_parallel_initialized,
init_distributed_environment,
)
from vllm.logger import init_logger
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.distributed.kv_transfer import ensure_kv_transfer_initialized
from vllm.distributed.parallel_state import get_pp_group, get_tp_group
from vllm.logger import logger
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
from vllm.utils import GiB_bytes, STR_DTYPE_TO_TORCH_DTYPE
from vllm.sequence import IntermediateTensors
from vllm.tasks import SupportedTask
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, GiB_bytes
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import KVCacheConfig, KVCacheSpec
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, AsyncModelRunnerOutput,
DraftTokenIds, ModelRunnerOutput)
from vllm.v1.worker.worker_base import WorkerBase
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
import vllm_npu.envs as envs_ascend
from vllm_npu.ascend_config import get_ascend_config, init_ascend_config
from vllm_npu.cpu_binding import bind_cpus
from vllm_npu.device_allocator.camem import CaMemAllocator
from vllm_npu.distributed.parallel_state import init_ascend_model_parallel
from vllm_npu.platform import NPUPlatform
from vllm_npu.utils import (init_ascend_soc_version, is_enable_nz,
register_ascend_customop, sleep_mode_enabled,
try_register_lib)
from vllm_npu.worker.model_runner_v1 import NPUModelRunner
logger = init_logger(__name__)
torch._dynamo.trace_rules.clear_lru_cache() # noqa: E402
from torch._dynamo.variables import TorchInGraphFunctionVariable # noqa: E402
torch_non_c_binding_in_graph_functions_npu = dict.fromkeys(
["torch.npu.current_stream"],
TorchInGraphFunctionVariable,
) # noqa: E402
torch_non_c_binding_in_graph_functions_npu[
"torch.npu.stream"] = TorchInGraphFunctionVariable # noqa: E402
torch._dynamo.trace_rules.torch_name_rule_map.append(
torch_non_c_binding_in_graph_functions_npu) # noqa: E402
class NPUWorker(WorkerBase):
"""Worker running on Ascend NPU devices."""
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
**kwargs,
):
super().__init__(
vllm_config=vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
# Additional parameters for compatibility with vllm
**kwargs):
"""Initialize the worker for Ascend."""
# register patch for vllm
from vllm_npu.utils import adapt_patch
adapt_patch()
is_enable_nz(vllm_config=vllm_config)
# Register ops when worker init.
from vllm_npu import ops
ops.register_dummy_fusion_op()
_register_atb_extensions()
register_ascend_customop(vllm_config)
# init ascend config and soc version
init_ascend_config(vllm_config)
init_ascend_soc_version()
use_sparse = False
if vllm_config.model_config is not None:
use_sparse = hasattr(vllm_config.model_config.hf_config,
"index_topk")
if use_sparse:
# Direct import instead of using try_register_lib to ensure proper error handling when
# custom_ops is necessary but not available (e.g., in DeepSeek v3.2 deployments)
# yapf: disable
import custom_ops # type: ignore # noqa
# yapf: enable
logger.info(
"custom_ops module loaded successfully. Custom operators like "
"torch.ops.custom.npu_sparse_flash_attention are now available."
)
super().__init__(vllm_config=vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker)
# binding cpu
if get_ascend_config().enable_cpu_binding:
try:
bind_cpus(self.local_rank, ratio=1.0)
except RuntimeError as e:
logger.error(f"{e} in {self.local_rank}")
except ValueError as e:
logger.error(f"{e} in {self.local_rank}")
except Exception:
logger.info("Skip binding cpu.")
# Try to import mindie_turbo to accelerate vLLM inference.
try_register_lib(
"mindie_turbo",
"MindIE Turbo is installed. vLLM inference will be accelerated with MindIE Turbo."
)
if self.model_config.trust_remote_code:
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
# Determine cache dtype
if self.cache_config.cache_dtype == "auto":
self.cache_dtype = self.model_config.dtype
else:
self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
self.cache_config.cache_dtype
]
self.cache_config.cache_dtype]
self.profiler = None
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
# -----------------------------------------------------------------
# Device initialization
# -----------------------------------------------------------------
self.profiler = self._init_profiler()
if sleep_mode_enabled():
# Buffers saved before sleep
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
def init_device(self) -> None:
"""Initialize the NPU device and distributed environment."""
import torch_npu # noqa: F401
os.environ.pop("HCCL_ASYNC_ERROR_HANDLING", None)
self.device = torch.device(f"npu:{self.local_rank}")
current_platform.set_device(self.device)
current_platform.empty_cache()
# Record initial memory
self.init_npu_memory, self.total_npu_memory = (
current_platform.mem_get_info()
)
# Initialize distributed (HCCL)
init_distributed_environment(
world_size=self.parallel_config.world_size,
rank=self.rank,
distributed_init_method=self.distributed_init_method,
local_rank=self.local_rank,
backend="hccl",
)
# Initialize TP / PP parallel groups
ensure_model_parallel_initialized(
tensor_model_parallel_size=(
self.parallel_config.tensor_parallel_size),
pipeline_model_parallel_size=(
self.parallel_config.pipeline_parallel_size),
)
# Set random seed
current_platform.seed_everything(self.model_config.seed)
# NPU memory snapshot
self.requested_memory = (
self.total_npu_memory * self.cache_config.gpu_memory_utilization
)
# Construct model runner
self.model_runner: GPUModelRunner = GPUModelRunner(
self.vllm_config, self.device
)
# -----------------------------------------------------------------
# Memory profiling
# -----------------------------------------------------------------
@torch.inference_mode()
def determine_available_memory(self) -> int:
"""Profile peak memory and return available KV cache memory."""
import torch_npu # noqa: F401
GiB = lambda b: round(b / GiB_bytes, 2)
current_platform.empty_cache()
gc.collect()
# Execute a forward pass with dummy inputs to profile memory
self.model_runner.profile_run()
# Check peak memory
free_npu_memory, _ = current_platform.mem_get_info()
assert self.init_npu_memory > free_npu_memory, (
"Error in memory profiling. "
f"Initial free memory {GiB(self.init_npu_memory)} GiB, "
f"current free memory {GiB(free_npu_memory)} GiB."
)
# Get peak memory from torch_npu stats
peak_memory = torch_npu.npu.memory_stats()["allocated_bytes.all.peak"]
current_platform.empty_cache()
torch_allocated = torch_npu.npu.memory_stats()[
"allocated_bytes.all.current"
]
total_allocated = (
self.total_npu_memory - torch_npu.npu.mem_get_info()[0]
)
non_torch = total_allocated - torch_allocated
if non_torch > 0:
peak_memory += non_torch
available_kv_cache_memory = int(
self.total_npu_memory * self.cache_config.gpu_memory_utilization
- peak_memory
)
available_kv_cache_memory = max(available_kv_cache_memory, 0)
# FixMe: this is a patch to fix the issue cause by https://github.com/vllm-project/vllm/commit/de94289a98d7ec52a5ef02719e01a1db8b505170
from vllm.model_executor.layers.linear import \
WEIGHT_LOADER_V2_SUPPORTED
if "UnquantizedLinearMethod" in WEIGHT_LOADER_V2_SUPPORTED:
WEIGHT_LOADER_V2_SUPPORTED.remove("UnquantizedLinearMethod")
def sleep(self, level: int = 1) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
free_bytes_before_sleep = NPUPlatform.mem_get_info()[0]
# Save the buffers before level 2 sleep
if level == 2:
model = self.model_runner.model
self._sleep_saved_buffers = {
name: buffer.cpu().clone()
for name, buffer in model.named_buffers()
}
allocator = CaMemAllocator.get_instance()
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
free_bytes_after_sleep, total = NPUPlatform.mem_get_info()
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
used_bytes = total - free_bytes_after_sleep
assert freed_bytes >= 0, "Memory usage increased after sleeping."
logger.info(
"Available KV cache memory: %.2f GiB (total: %.2f GiB)",
GiB(available_kv_cache_memory),
GiB(self.total_npu_memory),
)
"Sleep mode freed %.2f GiB memory, "
"%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
used_bytes / GiB_bytes)
gc.collect()
return available_kv_cache_memory
def wake_up(self, tags: Optional[list[str]] = None) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
# -----------------------------------------------------------------
# Model lifecycle
# -----------------------------------------------------------------
if is_enable_nz():
raise ValueError(
"FRACTAL_NZ mode is enabled. This may cause model parameter precision issues "
"in the RL scenarios. Please set vllm_npu_ENABLE_NZ=0.")
allocator = CaMemAllocator.get_instance()
allocator.wake_up(tags=tags)
def load_model(self) -> None:
self.model_runner.load_model()
def get_model(self):
return self.model_runner.get_model()
def get_kv_cache_spec(self) -> KVCacheSpec:
return self.model_runner.get_kv_cache_spec()
# Restore the buffers after level 2 sleep
if len(self._sleep_saved_buffers):
model = self.model_runner.model
for name, buffer in model.named_buffers():
if name in self._sleep_saved_buffers:
buffer.data.copy_(self._sleep_saved_buffers[name].data)
self._sleep_saved_buffers = {}
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Store the number of KV cache blocks."""
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
"""Allocate KV caches on NPU."""
self.model_runner.initialize_kv_cache(kv_cache_config)
def _init_device(self):
device = torch.device(f"npu:{self.local_rank}")
NPUPlatform.set_device(device)
NPUPlatform.empty_cache()
self.init_npu_memory = NPUPlatform.mem_get_info()[0]
# Initialize the distributed environment.
self._init_worker_distributed_environment()
# Set random seed.
NPUPlatform.seed_everything(self.model_config.seed)
return device
def compile_or_warm_up_model(self) -> None:
"""Warm up the model (no torch.compile on NPU)."""
self.model_runner.capture_model()
def init_device(self):
device = self._init_device()
# Init ModelRunner here, so that we have access to self.device.
self.model_runner = NPUModelRunner(self.vllm_config, device)
# -----------------------------------------------------------------
# Execution
# -----------------------------------------------------------------
def determine_available_memory(self) -> int:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
NPUPlatform.clear_npu_memory()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
_, total_npu_memory = NPUPlatform.mem_get_info()
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
free_npu_memory, _ = NPUPlatform.mem_get_info()
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
assert self.init_npu_memory > free_npu_memory, (
"Error in memory profiling. "
f"Initial free memory {self.init_npu_memory}, current free memory"
f" {free_npu_memory}. This happens when the NPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
# Get the peak memory allocation recorded by torch
peak_memory = torch_npu.npu.memory_stats()["allocated_bytes.all.peak"]
# TODO: don`t need impl this func after empty_cache in
# Worker.determine_num_available_blocks() unified`
NPUPlatform.empty_cache()
torch_allocated_bytes = torch_npu.npu.memory_stats(
)["allocated_bytes.all.current"]
total_allocated_bytes = torch_npu.npu.mem_get_info(
)[1] - torch_npu.npu.mem_get_info()[0]
non_torch_allocations = total_allocated_bytes - torch_allocated_bytes
if non_torch_allocations > 0:
peak_memory += non_torch_allocations
available_kv_cache_memory = int(
total_npu_memory * self.cache_config.gpu_memory_utilization -
peak_memory)
available_kv_cache_memory = int(max(available_kv_cache_memory, 0))
logger.info(
f"Available memory: {available_kv_cache_memory}, total memory: {total_npu_memory}"
)
return available_kv_cache_memory
def execute_model(
self,
scheduler_output: "SchedulerOutput",
) -> Optional[ModelRunnerOutput]:
output = self.model_runner.execute_model(scheduler_output)
return output if self.is_driver_worker else None
) -> Optional[Union[ModelRunnerOutput, AsyncModelRunnerOutput]]:
# enable msMonitor to monitor the performance of vllm-ascend
if envs_ascend.MSMONITOR_USE_DAEMON:
dp.step()
def execute_dummy_batch(self) -> None:
self.model_runner.execute_dummy_batch()
intermediate_tensors = None
forward_pass = scheduler_output.total_num_scheduled_tokens > 0
if forward_pass and not get_pp_group().is_first_rank:
intermediate_tensors = IntermediateTensors(
get_pp_group().recv_tensor_dict(
all_gather_group=get_tp_group()))
# -----------------------------------------------------------------
# Misc
# -----------------------------------------------------------------
output = self.model_runner.execute_model(scheduler_output,
intermediate_tensors)
if isinstance(output, (ModelRunnerOutput, AsyncModelRunnerOutput)):
return output
def sleep(self, level: int = 1) -> None:
pass
assert isinstance(output, IntermediateTensors)
parallel_config = self.vllm_config.parallel_config
assert parallel_config.distributed_executor_backend != (
"external_launcher") and not get_pp_group().is_last_rank
def wake_up(self, tags: Optional[list[str]] = None) -> None:
pass
get_pp_group().send_tensor_dict(output.tensors,
all_gather_group=get_tp_group())
def get_supported_tasks(self):
return self.model_runner.get_supported_tasks()
kv_connector_output = output.kv_connector_output
if not kv_connector_output:
return None
# In case of PP with kv transfer, we need to pass through the
# kv_connector_output
if (not kv_connector_output.finished_sending
and not kv_connector_output.finished_recving):
return EMPTY_MODEL_RUNNER_OUTPUT
output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
output.kv_connector_output = kv_connector_output
return output
def load_model(self) -> None:
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
assert allocator.get_current_usage() == 0, (
"Sleep mode can only be "
"used for one instance per process.")
context = allocator.use_memory_pool(tag="weights")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.load_model()
def compile_or_warm_up_model(self) -> None:
# Note: need to adapt for graph mode.
self.model_runner.eplb_warmup()
warmup_sizes = (self.vllm_config.compilation_config.compile_sizes
or []).copy()
if not self.model_config.enforce_eager:
warmup_sizes = [
x for x in warmup_sizes if x not in
self.vllm_config.compilation_config.cudagraph_capture_sizes
]
for size in sorted(warmup_sizes, reverse=True):
logger.info("Compile and warming up model for size %d", size)
self.model_runner._dummy_run(size)
if not self.model_config.enforce_eager:
self.model_runner.capture_model()
# Call ATB matmul to warm up; otherwise, the first operation (ReshapeAndCache)
# may cause performance degradation at runtime.
self._warm_up_atb()
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
NPUPlatform.seed_everything(self.model_config.seed)
def _warm_up_atb(self):
x = torch.rand((2, 4), dtype=torch.float16).npu()
weight = torch.rand((2, 4), dtype=torch.float16).npu()
c = torch.rand((4, 4), dtype=torch.float32).npu()
torch_npu._npu_matmul_add_fp32(x, weight, c)
def get_model(self) -> nn.Module:
return self.model_runner.get_model()
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
return self.model_runner.get_kv_cache_spec()
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
"""Allocate NPU KV cache with the specified kv_cache_config."""
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
context = allocator.use_memory_pool(tag="kv_cache")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.initialize_kv_cache(kv_cache_config)
def profile(self, is_start: bool = True):
if self.profiler is None:
raise RuntimeError("Profiler is not enabled.")
if is_start:
self.profiler.start()
else:
self.profiler.stop()
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
@@ -231,17 +371,72 @@ class NPUWorker(WorkerBase):
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> set:
def list_loras(self) -> set[int]:
return self.model_runner.list_loras()
def pin_lora(self, lora_id: int) -> bool:
return self.model_runner.pin_lora(lora_id)
def profile(self, is_start: bool = True) -> None:
pass
def execute_dummy_batch(self) -> None:
self.model_runner._dummy_run(
num_tokens=self.model_runner.decode_token_per_req,
uniform_decode=True)
def take_draft_token_ids(self):
def _init_worker_distributed_environment(self) -> None:
"""Initialize the distributed environment."""
init_distributed_environment(self.parallel_config.world_size,
self.rank, self.distributed_init_method,
self.local_rank, "hccl")
ensure_model_parallel_initialized(
self.parallel_config.tensor_parallel_size,
self.parallel_config.pipeline_parallel_size)
init_ascend_model_parallel(self.parallel_config)
ensure_kv_transfer_initialized(self.vllm_config)
def _init_profiler(self):
# Torch profiler. Enabled and configured through env vars:
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
if envs_vllm.VLLM_TORCH_PROFILER_DIR:
if envs_ascend.MSMONITOR_USE_DAEMON:
raise RuntimeError(
"MSMONITOR_USE_DAEMON and VLLM_TORCH_PROFILER_DIR cannot be both set at the same time."
)
torch_profiler_trace_dir = envs_vllm.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
experimental_config = torch_npu.profiler._ExperimentalConfig(
export_type=torch_npu.profiler.ExportType.Text,
profiler_level=torch_npu.profiler.ProfilerLevel.Level1,
msprof_tx=False,
aic_metrics=torch_npu.profiler.AiCMetrics.AiCoreNone,
l2_cache=False,
op_attr=False,
data_simplification=False,
record_op_args=False,
gc_detect_threshold=None,
)
return torch_npu.profiler.profile(
activities=[
torch_npu.profiler.ProfilerActivity.CPU,
torch_npu.profiler.ProfilerActivity.NPU,
],
with_stack=envs_vllm.VLLM_TORCH_PROFILER_WITH_STACK,
profile_memory=envs_vllm.\
VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
with_modules=False,
experimental_config=experimental_config,
on_trace_ready=torch_npu.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir))
else:
return None
def get_supported_pooling_tasks(self):
return self.model_runner.get_supported_pooling_tasks()
def get_supported_tasks(self) -> "tuple[SupportedTask, ...]":
return self.model_runner.get_supported_tasks()
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
return self.model_runner.take_draft_token_ids()
def check_health(self) -> None:
pass