This commit is contained in:
2026-02-10 23:08:39 +08:00
parent 1baa36026c
commit 6680585975
172 changed files with 52867 additions and 892 deletions

View File

@@ -1 +0,0 @@
"""Ascend NPU worker implementation."""

View File

@@ -0,0 +1,312 @@
from typing import Optional, Union
import numpy as np
import torch
from vllm.distributed import get_dcp_group
from vllm.utils import cdiv
class BlockTable:
def __init__(self,
block_size: int,
max_num_reqs: int,
max_num_blocks_per_req: int,
max_num_batched_tokens: int,
pin_memory: bool,
device: torch.device,
kernel_sizes: Union[list[int], None] = None):
self.max_num_reqs = max_num_reqs
self.max_num_blocks_per_req = max_num_blocks_per_req
self.max_num_batched_tokens = max_num_batched_tokens
self.pin_memory = pin_memory
self.device = device
self.physical_block_size = block_size
# If kernel_sizes is None or [0], use physical block size (no splitting)
if kernel_sizes is None or kernel_sizes == [0]:
self.block_size = block_size
self.logical_block_size = block_size
self.blocks_per_phys_block = 1
self.use_hybrid_blocks = False
else:
# Find the first kernel size that divides physical_block_size evenly
selected_kernel_size = None
for kernel_size in kernel_sizes:
if kernel_size > 0 \
and self.physical_block_size % kernel_size == 0:
selected_kernel_size = kernel_size
break
if selected_kernel_size is None:
raise ValueError(
f"None of the kernel sizes {kernel_sizes} can divide "
f"physical block size {self.physical_block_size} evenly")
self.block_size = selected_kernel_size
self.logical_block_size = selected_kernel_size
self.blocks_per_phys_block = (self.physical_block_size //
self.logical_block_size)
if self.blocks_per_phys_block > 1:
self.use_hybrid_blocks = True
else:
self.use_hybrid_blocks = False
if self.use_hybrid_blocks:
logical_table_size = (max_num_blocks_per_req *
self.blocks_per_phys_block)
else:
logical_table_size = max_num_blocks_per_req
self.block_table = torch.zeros(
(max_num_reqs, logical_table_size),
device=self.device,
dtype=torch.int32,
)
self.block_table_cpu = torch.zeros(
(max_num_reqs, logical_table_size),
device="cpu",
dtype=torch.int32,
pin_memory=pin_memory,
)
self.block_table_np = self.block_table_cpu.numpy()
self.num_blocks_per_row = np.zeros(max_num_reqs, dtype=np.int32)
self.slot_mapping_cpu = torch.zeros(self.max_num_batched_tokens,
dtype=torch.int64,
device="cpu",
pin_memory=self.pin_memory)
self.slot_mapping_np = self.slot_mapping_cpu.numpy()
self.slot_mapping = torch.zeros(self.max_num_batched_tokens,
dtype=torch.int64,
device=self.device)
try:
self.dcp_world_size = get_dcp_group().world_size
self.dcp_rank = get_dcp_group().rank_in_group
except AssertionError:
# DCP might not be initialized in testing
self.dcp_world_size = 1
self.dcp_rank = 0
self.kernel_sizes = kernel_sizes
def append_row(
self,
block_ids,
row_idx: int,
) -> None:
if not block_ids:
return
block_ids = np.array(block_ids)
if self.use_hybrid_blocks:
block_ids = self._convert_physical_to_logical_blocks(block_ids)
num_blocks = len(block_ids)
start = self.num_blocks_per_row[row_idx]
self.block_table_np[row_idx, start:start + num_blocks] = block_ids
self.num_blocks_per_row[row_idx] += num_blocks
def add_row(self, block_ids: list[int], row_idx: int) -> None:
self.num_blocks_per_row[row_idx] = 0
self.append_row(block_ids, row_idx)
def move_row(self, src: int, tgt: int) -> None:
num_blocks = self.num_blocks_per_row[src]
self.block_table_np[tgt, :num_blocks] = self.block_table_np[
src, :num_blocks]
self.num_blocks_per_row[tgt] = num_blocks
def swap_row(self, src: int, tgt: int) -> None:
num_blocks_src = self.num_blocks_per_row[src]
num_blocks_tgt = self.num_blocks_per_row[tgt]
self.num_blocks_per_row[src] = num_blocks_tgt
self.num_blocks_per_row[tgt] = num_blocks_src
self.block_table_np[[src, tgt]] = self.block_table_np[[tgt, src]]
def compute_slot_mapping(self, req_indices: np.ndarray,
positions: np.ndarray) -> None:
# E.g., [0, 1, 0, 1, 2, 3, 4, 0, 1, 2]
# -> [0, 0, K, K, K + 1, K + 1, K + 2, 2 * K, 2 * K, 2 * K + 1]
# where K is the max_num_blocks_per_req and the block size is 2.
# NOTE(woosuk): We can't simply use `token_indices // block_size`
# here because M (max_model_len) is not necessarily divisible by
# block_size.
if self.dcp_world_size > 1:
# Note(hc): The DCP implement store kvcache with an interleave
# style, the kvcache for the token whose token_idx is i is
# always stored on the GPU whose dcp_rank equals i % cp_world_size:
# Use a "virtual block" which equals to world_size * block_size
# for block_table_indices calculation.
virtual_block_size = self.block_size * self.dcp_world_size
# IMPORTANT: In hybrid mode, positions are in logical block space,
# but we need to map them to the correct logical block table indices
logical_block_idx = positions // virtual_block_size
# Account for the expanded logical table
# (always needed with unified tensor)
# Each physical block is split into multiple logical blocks
# The logical table has been expanded to accommodate this
block_table_indices = (req_indices * self.max_num_blocks_per_req *
self.blocks_per_phys_block +
logical_block_idx)
block_numbers = self.block_table_np.ravel()[block_table_indices]
# Use virtual_block_size for mask calculation, which marks local
# tokens.
virtual_block_offsets = positions % virtual_block_size
mask = virtual_block_offsets % self.dcp_world_size == self.dcp_rank
# Calculate local block_offsets
block_offsets = virtual_block_offsets // self.dcp_world_size
# Calculate slot_mapping
slot_mapping = block_numbers * self.block_size + block_offsets
# Write final slots, use -1 for not-local
self.slot_mapping_np[:req_indices.shape[0]] = np.where(
mask, slot_mapping, -1)
else:
assert self.kernel_sizes is not None
if self.block_size == self.kernel_sizes[0]:
# IMPORTANT: In hybrid mode, positions are in logical block space,
# but we need to map them to the correct logical block table indices
logical_block_idx = positions // self.block_size
# Account for the expanded logical table
# (always needed with unified tensor)
# Each physical block is split into multiple logical blocks
# The logical table has been expanded to accommodate this
block_table_indices = (
req_indices * self.max_num_blocks_per_req *
self.blocks_per_phys_block + logical_block_idx)
block_numbers = self.block_table_np.ravel(
)[block_table_indices]
block_offsets = positions % self.block_size
np.add(block_numbers * self.block_size,
block_offsets,
out=self.slot_mapping_np[:req_indices.shape[0]])
def commit_block_table(self, num_reqs: int) -> None:
self.block_table[:num_reqs].copy_(self.block_table_cpu[:num_reqs],
non_blocking=True)
def commit_slot_mapping(self, num_tokens: int) -> None:
self.slot_mapping[:num_tokens].copy_(
self.slot_mapping_cpu[:num_tokens], non_blocking=True)
def clear(self) -> None:
self.block_table.fill_(0)
self.block_table_cpu.fill_(0)
def _convert_physical_to_logical_blocks(
self, physical_blocks: np.ndarray) -> np.ndarray:
"""Convert physical block IDs to logical block IDs."""
if not self.use_hybrid_blocks:
return physical_blocks
# Create logical block IDs by splitting each physical block
logical_blocks: list[int] = []
for phys_block in physical_blocks:
# Convert physical block to multiple logical blocks
# Physical block 1 becomes logical blocks
# [1*split_ratio, 1*split_ratio+1, ...]
# But we need to account for the fact that block 0 is special
base_logical = phys_block * self.blocks_per_phys_block
logical_blocks.extend(
range(base_logical, base_logical + self.blocks_per_phys_block))
return np.array(logical_blocks, dtype=np.int32)
def get_device_tensor(self) -> torch.Tensor:
"""Returns the device tensor of the block table."""
return self.block_table
def get_cpu_tensor(self) -> torch.Tensor:
"""Returns the CPU tensor of the block table."""
return self.block_table_cpu
def get_numpy_array(self) -> np.ndarray:
"""Returns the numpy array of the block table."""
return self.block_table_np
class MultiGroupBlockTable:
"""The BlockTables for each KV cache group."""
def __init__(self,
max_num_reqs: int,
max_model_len: int,
max_num_batched_tokens: int,
pin_memory: bool,
device: torch.device,
block_sizes: list[int],
num_speculative_tokens: int = 0,
kernel_sizes: Optional[list[list[int]]] = None) -> None:
# Note(hc): each dcp rank only store
# (max_model_len//dcp_world_size) tokens in kvcache,
# so the block_size which used for calc max_num_blocks_per_req
# must be multiplied by dcp_world_size.
try:
dcp_world_size = get_dcp_group().world_size
except AssertionError:
# DCP might not be initialized in testing
dcp_world_size = 1
if kernel_sizes is None:
kernel_sizes = [[0]] * len(block_sizes)
# Ensure kernel_sizes matches block_sizes length
elif len(kernel_sizes) == 1 and len(block_sizes) > 1:
kernel_sizes = kernel_sizes * len(block_sizes)
elif len(kernel_sizes) != len(block_sizes):
raise ValueError(
f"kernel_sizes length ({len(kernel_sizes)}) must match "
f"block_sizes length ({len(block_sizes)})")
# Use zip to pair block_sizes with kernel_sizes one-to-one
self.block_tables = [
BlockTable(
block_size, max_num_reqs,
max(cdiv(max_model_len, block_size * dcp_world_size),
1 + num_speculative_tokens), max_num_batched_tokens,
pin_memory, device, kernel_size_list)
for block_size, kernel_size_list in zip(block_sizes, kernel_sizes)
]
def append_row(self, block_ids: tuple[list[int], ...],
row_idx: int) -> None:
for i, block_table in enumerate(self.block_tables):
block_table.append_row(block_ids[i], row_idx)
def add_row(self, block_ids: tuple[list[int], ...], row_idx: int) -> None:
for i, block_table in enumerate(self.block_tables):
block_table.add_row(block_ids[i], row_idx)
def move_row(self, src: int, tgt: int) -> None:
for block_table in self.block_tables:
block_table.move_row(src, tgt)
def swap_row(self, src: int, tgt: int) -> None:
for block_table in self.block_tables:
block_table.swap_row(src, tgt)
def compute_slot_mapping(self, req_indices: np.ndarray,
positions: np.ndarray) -> None:
for block_table in self.block_tables:
block_table.compute_slot_mapping(req_indices, positions)
def commit_block_table(self, num_reqs: int) -> None:
for block_table in self.block_tables:
block_table.commit_block_table(num_reqs)
def commit_slot_mapping(self, num_tokens: int) -> None:
for block_table in self.block_tables:
block_table.commit_slot_mapping(num_tokens)
def clear(self) -> None:
for block_table in self.block_tables:
block_table.clear()
def __getitem__(self, idx: int) -> "BlockTable":
"""Returns the BlockTable for the i-th KV cache group."""
return self.block_tables[idx]

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,842 @@
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_input_batch.py
#
from dataclasses import dataclass
from typing import Optional, cast
import numpy as np
import torch
from typing_extensions import deprecated
from vllm.lora.request import LoRARequest
from vllm.multimodal.inputs import (MultiModalFeatureSpec,
MultiModalKwargsItem,
MultiModalKwargsItems, PlaceholderRange)
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import SamplingParams, SamplingType
from vllm.utils import swap_dict_values
from vllm.v1.outputs import LogprobsTensors
from vllm.v1.pool.metadata import PoolingMetadata
from vllm.v1.sample.logits_processor import (BatchUpdateBuilder,
LogitsProcessors,
MoveDirectionality)
from vllm.v1.sample.metadata import SamplingMetadata
from vllm.v1.spec_decode.utils import is_spec_decode_unsupported
from vllm.v1.utils import copy_slice
from vllm_npu.worker.block_table import MultiGroupBlockTable
@dataclass
class CachedRequestState:
req_id: str
prompt_token_ids: list[int]
sampling_params: Optional[SamplingParams]
pooling_params: Optional[PoolingParams]
generator: Optional[torch.Generator]
block_ids: tuple[list[int], ...]
num_computed_tokens: int
output_token_ids: list[int]
mrope_positions: Optional[torch.Tensor] = None
mrope_position_delta: Optional[int] = None
mm_features: Optional[list[MultiModalFeatureSpec]] = None
# for back-compatibility, will be removed in next major release
mm_kwargs: Optional[list[MultiModalKwargsItem]] = None
mm_positions: Optional[list[PlaceholderRange]] = None
mm_hashes: Optional[list[PlaceholderRange]] = None
lora_request: Optional[LoRARequest] = None
def __post_init__(self):
self.num_prompt_tokens = len(self.prompt_token_ids)
@property
def num_tokens(self) -> int:
return self.num_prompt_tokens + len(self.output_token_ids)
# Temporary back-compatibility for plugins that define model runner
@property
@deprecated("`mm_inputs` is superseded by `mm_kwargs` and will be "
"removed in v0.13. Please use `mm_kwargs` instead.")
def mm_inputs(self) -> list[MultiModalKwargsItems]:
assert self.mm_features is not None
return [
MultiModalKwargsItems.from_seq([f.data]) for f in self.mm_features
if f.data is not None
]
def get_token_id(self, idx: int) -> int:
if idx < self.num_prompt_tokens:
return self.prompt_token_ids[idx]
else:
return self.output_token_ids[idx - self.num_prompt_tokens]
class InputBatch:
def __init__(
self,
max_num_reqs: int,
max_model_len: int,
max_num_batched_tokens: int,
device: torch.device,
pin_memory: bool,
vocab_size: int,
block_sizes: list[int], # The block_size of each kv cache group
logitsprocs: Optional[LogitsProcessors] = None,
is_spec_decode: bool = False,
is_pooling_model: bool = False,
num_speculative_tokens: int = 0,
kernel_block_sizes: Optional[list[list[int]]] = None):
self.is_pooling_model = is_pooling_model
self.is_spec_decode = is_spec_decode
self.max_num_reqs = max_num_reqs
self.max_model_len = max_model_len
self.max_num_batched_tokens = max_num_batched_tokens
self.device = device
self.pin_memory = pin_memory
self.vocab_size = vocab_size
self._req_ids: list[Optional[str]] = []
self.req_id_to_index: dict[str, int] = {}
# TODO(woosuk): This buffer could be too large if max_model_len is big.
# Find a way to reduce the CPU memory usage.
# This buffer is not directly transferred to the NPU, so it does not
# need to be pinned.
self.token_ids_cpu_tensor = torch.zeros(
(max_num_reqs, max_model_len),
device="cpu",
dtype=torch.int32,
pin_memory=False,
)
self.token_ids_cpu = self.token_ids_cpu_tensor.numpy()
self.num_tokens = np.zeros(max_num_reqs, dtype=np.int32)
self.num_tokens_no_spec = np.zeros(max_num_reqs, dtype=np.int32)
self.num_prompt_tokens = np.zeros(max_num_reqs, dtype=np.int32)
self.num_computed_tokens_cpu_tensor = torch.zeros(
(max_num_reqs, ),
device="cpu",
dtype=torch.int32,
pin_memory=pin_memory,
)
self.num_computed_tokens_cpu = \
self.num_computed_tokens_cpu_tensor.numpy()
# Block table.
self.block_table = MultiGroupBlockTable(
max_num_reqs=max_num_reqs,
max_model_len=max_model_len,
max_num_batched_tokens=max_num_batched_tokens,
pin_memory=pin_memory,
device=device,
block_sizes=block_sizes,
num_speculative_tokens=num_speculative_tokens,
kernel_sizes=kernel_block_sizes)
# Sampling-related.
self.temperature = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device=device)
self.temperature_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=pin_memory)
self.temperature_cpu = self.temperature_cpu_tensor.numpy()
self.greedy_reqs: set[str] = set()
self.random_reqs: set[str] = set()
self.top_p = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device=device)
self.top_p_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float32,
device="cpu",
pin_memory=pin_memory)
self.top_p_cpu = self.top_p_cpu_tensor.numpy()
self.top_p_reqs: set[str] = set()
self.top_k = torch.empty((max_num_reqs, ),
dtype=torch.int32,
device=device)
self.top_k_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.int32,
device="cpu",
pin_memory=pin_memory)
self.top_k_cpu = self.top_k_cpu_tensor.numpy()
self.top_k_reqs: set[str] = set()
# IDs of requests which do not support spec decoding
self.spec_decode_unsupported_reqs: set[str] = set()
# Frequency penalty related data structures
self.frequency_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.frequency_penalties_cpu_tensor = torch.empty(
(max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.frequency_penalties_cpu = \
self.frequency_penalties_cpu_tensor.numpy()
self.frequency_penalties_reqs: set[str] = set()
# Presence penalty related data structures
self.presence_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.presence_penalties_cpu_tensor = torch.empty((max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.presence_penalties_cpu = self.presence_penalties_cpu_tensor.numpy(
)
self.presence_penalties_reqs: set[str] = set()
# Repetition penalty related data structures
self.repetition_penalties = torch.empty((max_num_reqs, ),
dtype=torch.float,
device=device)
self.repetition_penalties_cpu_tensor = torch.empty(
(max_num_reqs, ),
dtype=torch.float,
device="cpu",
pin_memory=pin_memory)
self.repetition_penalties_cpu = \
self.repetition_penalties_cpu_tensor.numpy()
self.repetition_penalties_reqs: set[str] = set()
# Speculative decoding
self.num_accepted_tokens_cpu_tensor = torch.ones((max_num_reqs, ),
dtype=torch.int64,
device="cpu",
pin_memory=pin_memory)
self.num_accepted_tokens_cpu = \
self.num_accepted_tokens_cpu_tensor.numpy()
# lora related
self.request_lora_mapping = np.zeros((self.max_num_reqs, ),
dtype=np.int32)
self.lora_id_to_request_ids: dict[int, set[str]] = {}
self.lora_id_to_lora_request: dict[int, LoRARequest] = {}
# req_index -> generator
# NOTE(woosuk): The indices of the requests that do not have their own
# generator should not be included in the dictionary.
self.generators: dict[int, torch.Generator] = {}
self.num_logprobs: dict[str, int] = {}
# NOTE(rob): num_prompt_logprobs only includes reqs
# that are currently in the prefill phase.
self.num_prompt_logprobs: dict[str, int] = {}
# To accumulate prompt logprobs tensor chunks across prefill steps.
self.in_progress_prompt_logprobs_cpu: dict[str, LogprobsTensors] = {}
# Internal representation of per-step batch state changes, used for
# reordering persistent batch and generating logitsprocs batch state
# updates. Should reset each step.
self.batch_update_builder = BatchUpdateBuilder()
# TODO convert this to LogitsProcessor
self.has_allowed_token_ids: set[str] = set()
# NOTE(lufang): In the mask tensor, if the corresponding token allowed,
# the value is False. Since we use masked_fill_ to set -inf.
self.allowed_token_ids_mask: Optional[torch.Tensor] = None
self.allowed_token_ids_mask_cpu_tensor: Optional[torch.Tensor] = None
# req_index -> bad_words_token_ids
self.bad_words_token_ids: dict[int, list[list[int]]] = {}
self.logits_processing_needs_token_ids = np.zeros(max_num_reqs,
dtype=bool)
self.req_output_token_ids: list[Optional[list[int]]] = []
# Store provided logitsprocs. If none are provided, initialize empty
# data structure
self.logitsprocs = logitsprocs or LogitsProcessors()
# This is updated each time the batch constituents change.
self.sampling_metadata = self._make_sampling_metadata()
self.pooling_params: dict[str, PoolingParams] = {}
# Cached reference to the GPU tensor of previously sampled tokens
self.prev_sampled_token_ids: Optional[torch.Tensor] = None
self.prev_sampled_token_ids_invalid_indices: Optional[set[int]] = None
self.prev_req_id_to_index: Optional[dict[str, int]] = None
@property
def req_ids(self) -> list[str]:
# None elements should only be present transiently
# while performing state updates to the batch.
return cast(list[str], self._req_ids)
def _register_add_request(self, request: "CachedRequestState") -> int:
"""Track add-request operations for logits processors.
Not applicable to pooling models.
"""
# Detailed added request metadata is only required for non-pooling
# models, to support logitsprocs
assert request.sampling_params
# Fill the next empty index if there is one.
if (new_req_index := self.batch_update_builder.pop_removed()) is None:
# Append to end otherwise.
new_req_index = self.num_reqs
assert new_req_index < self.max_num_reqs
self.batch_update_builder.added.append(
(new_req_index, request.sampling_params, request.prompt_token_ids,
request.output_token_ids))
return new_req_index
def add_request(
self,
request: "CachedRequestState",
) -> int:
if not self.is_pooling_model:
# New request index bookkeeping for autoregressive models.
req_index = self._register_add_request(request)
else:
req_index = self.num_reqs
req_id = request.req_id
if req_index == len(self._req_ids):
self._req_ids.append(req_id)
self.req_output_token_ids.append(request.output_token_ids)
else:
self._req_ids[req_index] = req_id
self.req_output_token_ids[req_index] = request.output_token_ids
self.req_id_to_index[req_id] = req_index
# Copy the prompt token ids and output token ids.
num_prompt_tokens = len(request.prompt_token_ids)
self.num_prompt_tokens[req_index] = num_prompt_tokens
self.token_ids_cpu[
req_index, :num_prompt_tokens] = request.prompt_token_ids
start_idx = num_prompt_tokens
end_idx = start_idx + len(request.output_token_ids)
self.token_ids_cpu[req_index,
start_idx:end_idx] = request.output_token_ids
# Number of token ids in token_ids_cpu.
# NOTE(woosuk): This may include spec decode tokens.
self.num_tokens[req_index] = request.num_tokens
# Number of tokens without spec decode tokens.
self.num_tokens_no_spec[req_index] = request.num_tokens
self.num_computed_tokens_cpu[req_index] = request.num_computed_tokens
self.block_table.add_row(request.block_ids, req_index)
if sampling_params := request.sampling_params:
if (self.is_spec_decode
and is_spec_decode_unsupported(sampling_params)):
self.spec_decode_unsupported_reqs.add(req_id)
if sampling_params.sampling_type == SamplingType.GREEDY:
# Avoid later division by zero.
self.temperature_cpu[req_index] = -1.0
self.greedy_reqs.add(req_id)
else:
self.temperature_cpu[req_index] = sampling_params.temperature
self.random_reqs.add(req_id)
self.top_p_cpu[req_index] = sampling_params.top_p
if sampling_params.top_p < 1:
self.top_p_reqs.add(req_id)
top_k = sampling_params.top_k
if 0 < top_k < self.vocab_size:
self.top_k_reqs.add(req_id)
else:
top_k = self.vocab_size
self.top_k_cpu[req_index] = top_k
self.frequency_penalties_cpu[
req_index] = sampling_params.frequency_penalty
if sampling_params.frequency_penalty != 0.0:
self.frequency_penalties_reqs.add(req_id)
self.presence_penalties_cpu[
req_index] = sampling_params.presence_penalty
if sampling_params.presence_penalty != 0.0:
self.presence_penalties_reqs.add(req_id)
self.repetition_penalties_cpu[
req_index] = sampling_params.repetition_penalty
if sampling_params.repetition_penalty != 1.0:
self.repetition_penalties_reqs.add(req_id)
# NOTE(woosuk): self.generators should not include the requests that
# do not have their own generator.
if request.generator is not None:
self.generators[req_index] = request.generator
if sampling_params.logprobs is not None:
self.num_logprobs[req_id] = (self.vocab_size
if sampling_params.logprobs == -1
else sampling_params.logprobs)
if sampling_params.prompt_logprobs is not None:
self.num_prompt_logprobs[
req_id] = sampling_params.prompt_logprobs
if sampling_params.allowed_token_ids:
self.has_allowed_token_ids.add(req_id)
if self.allowed_token_ids_mask_cpu_tensor is None:
# Lazy allocation for this tensor, which can be large.
# False means we don't fill with -inf.
self.allowed_token_ids_mask = torch.zeros(
self.max_num_reqs,
self.vocab_size,
dtype=torch.bool,
device=self.device)
self.allowed_token_ids_mask_cpu_tensor = torch.zeros(
self.max_num_reqs,
self.vocab_size,
dtype=torch.bool,
device="cpu")
self.allowed_token_ids_mask_cpu_tensor[req_index] = True
# False means we don't fill with -inf.
self.allowed_token_ids_mask_cpu_tensor[req_index][
sampling_params.allowed_token_ids] = False
if sampling_params.bad_words_token_ids:
self.bad_words_token_ids[
req_index] = sampling_params.bad_words_token_ids
elif pooling_params := request.pooling_params:
self.pooling_params[req_id] = pooling_params
self.logits_processing_needs_token_ids[req_index] = (
pooling_params.requires_token_ids)
else:
raise NotImplementedError(request)
# Speculative decoding: by default 1 token is generated.
self.num_accepted_tokens_cpu[req_index] = 1
# Add request lora ID
if request.lora_request:
lora_id = request.lora_request.lora_int_id
if lora_id not in self.lora_id_to_request_ids:
self.lora_id_to_request_ids[lora_id] = set()
self.request_lora_mapping[req_index] = lora_id
self.lora_id_to_request_ids[lora_id].add(request.req_id)
self.lora_id_to_lora_request[lora_id] = request.lora_request
else:
# No LoRA
self.request_lora_mapping[req_index] = 0
return req_index
def remove_request(self, req_id: str) -> Optional[int]:
"""This method must always be followed by a call to condense().
Args:
req_id: request to remove
Returns:
Removed request index, or `None` if `req_id` not recognized
"""
req_index = self.req_id_to_index.pop(req_id, None)
if req_index is None:
return None
if not self.is_pooling_model:
# Autoregressive models require bookkeeping of removed requests to
# support logitsprocs.
self.batch_update_builder.removed_append(req_index)
self._req_ids[req_index] = None
self.req_output_token_ids[req_index] = None
self.greedy_reqs.discard(req_id)
self.random_reqs.discard(req_id)
self.top_p_reqs.discard(req_id)
self.top_k_reqs.discard(req_id)
self.spec_decode_unsupported_reqs.discard(req_id)
self.frequency_penalties_reqs.discard(req_id)
self.presence_penalties_reqs.discard(req_id)
self.repetition_penalties_reqs.discard(req_id)
self.generators.pop(req_index, None)
self.num_logprobs.pop(req_id, None)
self.num_prompt_logprobs.pop(req_id, None)
self.in_progress_prompt_logprobs_cpu.pop(req_id, None)
# LoRA
lora_id = self.request_lora_mapping[req_index]
if lora_id != 0:
self.lora_id_to_request_ids[lora_id].discard(req_id)
if len(self.lora_id_to_request_ids[lora_id]) == 0:
self.lora_id_to_request_ids.pop(lora_id)
self.lora_id_to_lora_request.pop(lora_id)
self.request_lora_mapping[req_index] = 0
self.has_allowed_token_ids.discard(req_id)
if self.allowed_token_ids_mask_cpu_tensor is not None:
# False means we don't fill with -inf.
self.allowed_token_ids_mask_cpu_tensor[req_index].fill_(False)
self.bad_words_token_ids.pop(req_index, None)
self.pooling_params.pop(req_id, None)
return req_index
def swap_states(self, i1: int, i2: int) -> None:
# For autoregressive models, track detailed request reordering info
# to support logitsprocs
self.batch_update_builder.moved.append(
(i1, i2, MoveDirectionality.SWAP))
old_id_i1 = self._req_ids[i1]
old_id_i2 = self._req_ids[i2]
self._req_ids[i1], self._req_ids[i2] =\
self._req_ids[i2], self._req_ids[i1] # noqa
self.req_output_token_ids[i1], self.req_output_token_ids[i2] =\
self.req_output_token_ids[i2], self.req_output_token_ids[i1]
assert old_id_i1 is not None and old_id_i2 is not None
self.req_id_to_index[old_id_i1], self.req_id_to_index[old_id_i2] =\
self.req_id_to_index[old_id_i2], self.req_id_to_index[old_id_i1]
self.num_tokens[i1], self.num_tokens[i2] =\
self.num_tokens[i2], self.num_tokens[i1]
self.num_tokens_no_spec[i1], self.num_tokens_no_spec[i2] =\
self.num_tokens_no_spec[i2], self.num_tokens_no_spec[i1]
self.num_prompt_tokens[i1], self.num_prompt_tokens[i2] =\
self.num_prompt_tokens[i2], self.num_prompt_tokens[i1]
self.num_computed_tokens_cpu[i1], self.num_computed_tokens_cpu[i2] =\
self.num_computed_tokens_cpu[i2], self.num_computed_tokens_cpu[i1]
self.temperature_cpu[i1], self.temperature_cpu[i2] =\
self.temperature_cpu[i2], self.temperature_cpu[i1]
self.top_p_cpu[i1], self.top_p_cpu[i2] =\
self.top_p_cpu[i2], self.top_p_cpu[i1]
self.top_k_cpu[i1], self.top_k_cpu[i2] =\
self.top_k_cpu[i2], self.top_k_cpu[i1]
self.frequency_penalties_cpu[i1], self.frequency_penalties_cpu[i2] =\
self.frequency_penalties_cpu[i2], self.frequency_penalties_cpu[i1]
self.presence_penalties_cpu[i1], self.presence_penalties_cpu[i2] =\
self.presence_penalties_cpu[i2], self.presence_penalties_cpu[i1]
self.repetition_penalties_cpu[i1], self.repetition_penalties_cpu[i2] =\
self.repetition_penalties_cpu[i2], self.repetition_penalties_cpu[i1]
self.num_accepted_tokens_cpu[i1], self.num_accepted_tokens_cpu[i2] =\
self.num_accepted_tokens_cpu[i2], self.num_accepted_tokens_cpu[i1]
# NOTE: the following is unsafe
# self.token_ids_cpu[i1, ...], self.token_ids_cpu[i2, ...], =\
# self.token_ids_cpu[i2, ...], self.token_ids_cpu[i1, ...]
# instead, we need to temporiarily copy the data for one of the indices
# TODO(lucas): optimize this by only copying valid indices
tmp = self.token_ids_cpu[i1, ...].copy()
self.token_ids_cpu[i1, ...] = self.token_ids_cpu[i2, ...]
self.token_ids_cpu[i2, ...] = tmp
swap_dict_values(self.generators, i1, i2)
swap_dict_values(self.bad_words_token_ids, i1, i2)
self.request_lora_mapping[i1], self.request_lora_mapping[i2] =\
self.request_lora_mapping[i2], self.request_lora_mapping[i1]
if self.allowed_token_ids_mask_cpu_tensor is not None:
self.allowed_token_ids_mask_cpu_tensor[i1], \
self.allowed_token_ids_mask_cpu_tensor[i2] =\
self.allowed_token_ids_mask_cpu_tensor[i2], \
self.allowed_token_ids_mask_cpu_tensor[i1]
self.block_table.swap_row(i1, i2)
def condense(self) -> None:
"""Slide non-empty requests down into lower, empty indices.
Any consecutive empty indices at the very end of the list are not
filled.
Args:
empty_req_indices: empty indices which may be filled.
Returns:
swaps: list of (from,to) swap tuples for moved requests
empty_req_indices: indices not filled by condensation
"""
num_reqs = self.num_reqs
if self.is_pooling_model:
# Will be contiguous in pooling case, just trim the lists.
del self._req_ids[num_reqs:]
del self.req_output_token_ids[num_reqs:]
return
if not (empty_req_indices := self.batch_update_builder.removed):
# All removed requests were replaced by added requests, or else no
# requests were removed at all. No condense() needed
return
if num_reqs == 0:
# The batched states are empty.
self._req_ids.clear()
self.req_output_token_ids.clear()
return
# NOTE(woosuk): This function assumes that the empty_req_indices
# is sorted in descending order.
last_req_index = num_reqs + len(empty_req_indices) - 1
while empty_req_indices:
# Find the largest non-empty index.
while last_req_index in empty_req_indices:
last_req_index -= 1
# Find the smallest empty index.
empty_index = self.batch_update_builder.peek_removed()
assert empty_index is not None
if empty_index >= last_req_index:
break
# Move active request down into empty request
# index.
self.batch_update_builder.pop_removed()
# Autoregressive models require detailed tracking of condense
# operations to support logitsprocs
self.batch_update_builder.moved.append(
(last_req_index, empty_index,
MoveDirectionality.UNIDIRECTIONAL))
req_id = self._req_ids[last_req_index]
output_token_ids = self.req_output_token_ids[last_req_index]
assert req_id is not None
self._req_ids[empty_index] = req_id
self._req_ids[last_req_index] = None
self.req_output_token_ids[empty_index] = output_token_ids
self.req_output_token_ids[last_req_index] = None
self.req_id_to_index[req_id] = empty_index
num_tokens = self.num_tokens[last_req_index]
self.token_ids_cpu[empty_index, :num_tokens] = self.token_ids_cpu[
last_req_index, :num_tokens]
self.num_tokens[empty_index] = num_tokens
self.num_tokens_no_spec[empty_index] = self.num_tokens_no_spec[
last_req_index]
self.num_prompt_tokens[empty_index] = self.num_prompt_tokens[
last_req_index]
self.num_computed_tokens_cpu[
empty_index] = self.num_computed_tokens_cpu[last_req_index]
self.block_table.move_row(last_req_index, empty_index)
self.temperature_cpu[empty_index] = self.temperature_cpu[
last_req_index]
self.top_p_cpu[empty_index] = self.top_p_cpu[last_req_index]
self.top_k_cpu[empty_index] = self.top_k_cpu[last_req_index]
self.frequency_penalties_cpu[
empty_index] = self.frequency_penalties_cpu[last_req_index]
self.presence_penalties_cpu[
empty_index] = self.presence_penalties_cpu[last_req_index]
self.repetition_penalties_cpu[
empty_index] = self.repetition_penalties_cpu[last_req_index]
self.num_accepted_tokens_cpu[
empty_index] = self.num_accepted_tokens_cpu[last_req_index]
generator = self.generators.pop(last_req_index, None)
if generator is not None:
self.generators[empty_index] = generator
self.request_lora_mapping[empty_index] = self.request_lora_mapping[
last_req_index]
# TODO convert these to LogitsProcessors
if self.allowed_token_ids_mask_cpu_tensor is not None:
self.allowed_token_ids_mask_cpu_tensor[
empty_index] = self.allowed_token_ids_mask_cpu_tensor[
last_req_index]
bad_words_token_ids = self.bad_words_token_ids.pop(
last_req_index, None)
if bad_words_token_ids is not None:
self.bad_words_token_ids[empty_index] = bad_words_token_ids
# Decrement last_req_index since it is now empty.
last_req_index -= 1
# Trim lists to the batch size.
del self._req_ids[num_reqs:]
del self.req_output_token_ids[num_reqs:]
def refresh_metadata(self):
"""Apply any batch updates to sampling metadata."""
if self.is_pooling_model:
# Batch changes every step for pooling models.
self.sampling_metadata = self._make_sampling_metadata()
return
# For non-pooling models - generate and apply logitsprocs update;
# reset batch update tracking.
# Update sampling metadata if batch state is changed.
batch_update = self.batch_update_builder.get_and_reset(self.num_reqs)
for logit_proc in self.logitsprocs.all:
logit_proc.update_state(batch_update)
if batch_update:
self.sampling_metadata = self._make_sampling_metadata()
def _make_sampling_metadata(self) -> SamplingMetadata:
num_reqs = self.num_reqs
if not self.all_greedy:
temperature = copy_slice(self.temperature_cpu_tensor,
self.temperature, num_reqs)
else:
temperature = None
if not self.no_top_p:
copy_slice(self.top_p_cpu_tensor, self.top_p, num_reqs)
if not self.no_top_k:
copy_slice(self.top_k_cpu_tensor, self.top_k, num_reqs)
if not self.no_penalties:
# Since syncing these tensors is expensive only copy them
# if necessary i.e. if there are requests which require
# penalties to be applied during sampling.
copy_slice(self.frequency_penalties_cpu_tensor,
self.frequency_penalties, num_reqs)
copy_slice(self.presence_penalties_cpu_tensor,
self.presence_penalties, num_reqs)
copy_slice(self.repetition_penalties_cpu_tensor,
self.repetition_penalties, num_reqs)
needs_prompt_token_ids = (
not self.no_penalties
or self.logits_processing_needs_token_ids[:num_reqs].any())
if needs_prompt_token_ids:
# The prompt tokens are used only for applying penalties or
# step pooling during the sampling/pooling process.
# Hence copy these tensors only when there are requests which
# need penalties/step_pooler to be applied.
prompt_token_ids = self._make_prompt_token_ids_tensor()
else:
prompt_token_ids = None
allowed_token_ids_mask: Optional[torch.Tensor] = None
if not self.no_allowed_token_ids:
assert self.allowed_token_ids_mask is not None
copy_slice(self.allowed_token_ids_mask_cpu_tensor,
self.allowed_token_ids_mask, num_reqs)
allowed_token_ids_mask = self.allowed_token_ids_mask[:num_reqs]
return SamplingMetadata(
temperature=temperature,
all_greedy=self.all_greedy,
all_random=self.all_random,
top_p=None if self.no_top_p else self.top_p[:num_reqs],
top_k=None if self.no_top_k else self.top_k[:num_reqs],
generators=self.generators,
max_num_logprobs=self.max_num_logprobs,
prompt_token_ids=prompt_token_ids,
frequency_penalties=self.frequency_penalties[:num_reqs],
presence_penalties=self.presence_penalties[:num_reqs],
repetition_penalties=self.repetition_penalties[:num_reqs],
output_token_ids=cast(list[list[int]], self.req_output_token_ids),
no_penalties=self.no_penalties,
allowed_token_ids_mask=allowed_token_ids_mask,
bad_words_token_ids=self.bad_words_token_ids,
logitsprocs=self.logitsprocs,
)
@property
def pooling_metadata(self) -> PoolingMetadata:
if len(self.pooling_params) == 0:
pooling_params = []
else:
# Note, for now this assumes that all request in the batch
# are either sampling or pooling requests
assert len(self.req_ids) == len(self.pooling_params)
pooling_params = [
self.pooling_params[req_id] for req_id in self.req_ids
]
return PoolingMetadata(
prompt_lens=torch.from_numpy(
self.num_prompt_tokens[:self.num_reqs]),
prompt_token_ids=self.sampling_metadata.prompt_token_ids,
pooling_params=pooling_params,
)
def _make_prompt_token_ids_tensor(self) -> torch.Tensor:
max_prompt_len = self.num_prompt_tokens[:self.num_reqs].max()
prompt_token_ids_cpu_tensor = torch.empty(
(self.num_reqs, max_prompt_len),
device="cpu",
dtype=torch.int64,
pin_memory=self.pin_memory,
)
prompt_token_ids = prompt_token_ids_cpu_tensor.numpy()
prompt_token_ids[:] = self.token_ids_cpu[:self.
num_reqs, :max_prompt_len]
# Use the value of vocab_size as a pad since we don't have a
# token_id of this value.
for i in range(self.num_reqs):
prompt_token_ids[i, self.num_prompt_tokens[i]:] = self.vocab_size
return prompt_token_ids_cpu_tensor.to(device=self.device,
non_blocking=True)
def make_lora_inputs(
self, num_scheduled_tokens: np.ndarray
) -> tuple[tuple[int, ...], tuple[int, ...], set[LoRARequest]]:
"""
Given the num_scheduled_tokens for each request in the batch, return
datastructures used to activate the current LoRAs.
Returns:
1. prompt_lora_mapping: A tuple of size self.num_reqs where,
prompt_lora_mapping[i] is the LoRA id to use for the ith prompt.
2. token_lora_mapping: A tuple of size np.sum(num_scheduled_tokens)
where, token_lora_mapping[i] is the LoRA id to use for ith token.
3. lora_requests: Set of relevant LoRA requests.
"""
req_lora_mapping = self.request_lora_mapping[:self.num_reqs]
prompt_lora_mapping = tuple(req_lora_mapping)
token_lora_mapping = tuple(
req_lora_mapping.repeat(num_scheduled_tokens))
active_lora_requests: set[LoRARequest] = set(
self.lora_id_to_lora_request.values())
return prompt_lora_mapping, token_lora_mapping, active_lora_requests
@property
def num_reqs(self) -> int:
return len(self.req_id_to_index)
@property
def all_greedy(self) -> bool:
return len(self.random_reqs) == 0
@property
def all_random(self) -> bool:
return len(self.greedy_reqs) == 0
@property
def no_top_p(self) -> bool:
return len(self.top_p_reqs) == 0
@property
def no_top_k(self) -> bool:
return len(self.top_k_reqs) == 0
@property
def no_penalties(self) -> bool:
return (len(self.presence_penalties_reqs) == 0
and len(self.frequency_penalties_reqs) == 0
and len(self.repetition_penalties_reqs) == 0)
@property
def max_num_logprobs(self) -> Optional[int]:
return max(self.num_logprobs.values()) if self.num_logprobs else None
@property
def no_prompt_logprob(self) -> bool:
return not self.num_prompt_logprobs
@property
def no_allowed_token_ids(self) -> bool:
return len(self.has_allowed_token_ids) == 0

View File

@@ -1,229 +1,369 @@
"""
NPUWorker — Ascend NPU worker for vLLM v1.
#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_worker.py
#
Extends the GPU Worker to run on Ascend NPU devices, replacing CUDA
APIs with ``torch.npu`` / ``torch_npu`` equivalents for device
management, memory profiling, and distributed initialization.
"""
import gc
import os
from typing import TYPE_CHECKING, Any, Optional
import copy
from typing import Optional, Union
import torch
import torch.nn as nn
import torch_npu
import vllm.envs as envs_vllm
from torch_npu.op_plugin.atb._atb_ops import _register_atb_extensions
from torch_npu.profiler import dynamic_profile as dp
from vllm.config import VllmConfig
from vllm.distributed import (
ensure_model_parallel_initialized,
init_distributed_environment,
)
from vllm.logger import init_logger
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.distributed.kv_transfer import ensure_kv_transfer_initialized
from vllm.distributed.parallel_state import get_pp_group, get_tp_group
from vllm.logger import logger
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
from vllm.utils import GiB_bytes, STR_DTYPE_TO_TORCH_DTYPE
from vllm.sequence import IntermediateTensors
from vllm.tasks import SupportedTask
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, GiB_bytes
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import KVCacheConfig, KVCacheSpec
from vllm.v1.outputs import ModelRunnerOutput
from vllm.v1.worker.gpu_model_runner import GPUModelRunner
from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, AsyncModelRunnerOutput,
DraftTokenIds, ModelRunnerOutput)
from vllm.v1.worker.worker_base import WorkerBase
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
import vllm_npu.envs as envs_ascend
from vllm_npu.ascend_config import get_ascend_config, init_ascend_config
from vllm_npu.cpu_binding import bind_cpus
from vllm_npu.device_allocator.camem import CaMemAllocator
from vllm_npu.distributed.parallel_state import init_ascend_model_parallel
from vllm_npu.platform import NPUPlatform
from vllm_npu.utils import (init_ascend_soc_version, is_enable_nz,
register_ascend_customop, sleep_mode_enabled,
try_register_lib)
from vllm_npu.worker.model_runner_v1 import NPUModelRunner
logger = init_logger(__name__)
torch._dynamo.trace_rules.clear_lru_cache() # noqa: E402
from torch._dynamo.variables import TorchInGraphFunctionVariable # noqa: E402
torch_non_c_binding_in_graph_functions_npu = dict.fromkeys(
["torch.npu.current_stream"],
TorchInGraphFunctionVariable,
) # noqa: E402
torch_non_c_binding_in_graph_functions_npu[
"torch.npu.stream"] = TorchInGraphFunctionVariable # noqa: E402
torch._dynamo.trace_rules.torch_name_rule_map.append(
torch_non_c_binding_in_graph_functions_npu) # noqa: E402
class NPUWorker(WorkerBase):
"""Worker running on Ascend NPU devices."""
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
**kwargs,
):
super().__init__(
vllm_config=vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker,
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
# Additional parameters for compatibility with vllm
**kwargs):
"""Initialize the worker for Ascend."""
# register patch for vllm
from vllm_npu.utils import adapt_patch
adapt_patch()
is_enable_nz(vllm_config=vllm_config)
# Register ops when worker init.
from vllm_npu import ops
ops.register_dummy_fusion_op()
_register_atb_extensions()
register_ascend_customop(vllm_config)
# init ascend config and soc version
init_ascend_config(vllm_config)
init_ascend_soc_version()
use_sparse = False
if vllm_config.model_config is not None:
use_sparse = hasattr(vllm_config.model_config.hf_config,
"index_topk")
if use_sparse:
# Direct import instead of using try_register_lib to ensure proper error handling when
# custom_ops is necessary but not available (e.g., in DeepSeek v3.2 deployments)
# yapf: disable
import custom_ops # type: ignore # noqa
# yapf: enable
logger.info(
"custom_ops module loaded successfully. Custom operators like "
"torch.ops.custom.npu_sparse_flash_attention are now available."
)
super().__init__(vllm_config=vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker)
# binding cpu
if get_ascend_config().enable_cpu_binding:
try:
bind_cpus(self.local_rank, ratio=1.0)
except RuntimeError as e:
logger.error(f"{e} in {self.local_rank}")
except ValueError as e:
logger.error(f"{e} in {self.local_rank}")
except Exception:
logger.info("Skip binding cpu.")
# Try to import mindie_turbo to accelerate vLLM inference.
try_register_lib(
"mindie_turbo",
"MindIE Turbo is installed. vLLM inference will be accelerated with MindIE Turbo."
)
if self.model_config.trust_remote_code:
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
# Determine cache dtype
if self.cache_config.cache_dtype == "auto":
self.cache_dtype = self.model_config.dtype
else:
self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
self.cache_config.cache_dtype
]
self.cache_config.cache_dtype]
self.profiler = None
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
# -----------------------------------------------------------------
# Device initialization
# -----------------------------------------------------------------
self.profiler = self._init_profiler()
if sleep_mode_enabled():
# Buffers saved before sleep
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
def init_device(self) -> None:
"""Initialize the NPU device and distributed environment."""
import torch_npu # noqa: F401
os.environ.pop("HCCL_ASYNC_ERROR_HANDLING", None)
self.device = torch.device(f"npu:{self.local_rank}")
current_platform.set_device(self.device)
current_platform.empty_cache()
# Record initial memory
self.init_npu_memory, self.total_npu_memory = (
current_platform.mem_get_info()
)
# Initialize distributed (HCCL)
init_distributed_environment(
world_size=self.parallel_config.world_size,
rank=self.rank,
distributed_init_method=self.distributed_init_method,
local_rank=self.local_rank,
backend="hccl",
)
# Initialize TP / PP parallel groups
ensure_model_parallel_initialized(
tensor_model_parallel_size=(
self.parallel_config.tensor_parallel_size),
pipeline_model_parallel_size=(
self.parallel_config.pipeline_parallel_size),
)
# Set random seed
current_platform.seed_everything(self.model_config.seed)
# NPU memory snapshot
self.requested_memory = (
self.total_npu_memory * self.cache_config.gpu_memory_utilization
)
# Construct model runner
self.model_runner: GPUModelRunner = GPUModelRunner(
self.vllm_config, self.device
)
# -----------------------------------------------------------------
# Memory profiling
# -----------------------------------------------------------------
@torch.inference_mode()
def determine_available_memory(self) -> int:
"""Profile peak memory and return available KV cache memory."""
import torch_npu # noqa: F401
GiB = lambda b: round(b / GiB_bytes, 2)
current_platform.empty_cache()
gc.collect()
# Execute a forward pass with dummy inputs to profile memory
self.model_runner.profile_run()
# Check peak memory
free_npu_memory, _ = current_platform.mem_get_info()
assert self.init_npu_memory > free_npu_memory, (
"Error in memory profiling. "
f"Initial free memory {GiB(self.init_npu_memory)} GiB, "
f"current free memory {GiB(free_npu_memory)} GiB."
)
# Get peak memory from torch_npu stats
peak_memory = torch_npu.npu.memory_stats()["allocated_bytes.all.peak"]
current_platform.empty_cache()
torch_allocated = torch_npu.npu.memory_stats()[
"allocated_bytes.all.current"
]
total_allocated = (
self.total_npu_memory - torch_npu.npu.mem_get_info()[0]
)
non_torch = total_allocated - torch_allocated
if non_torch > 0:
peak_memory += non_torch
available_kv_cache_memory = int(
self.total_npu_memory * self.cache_config.gpu_memory_utilization
- peak_memory
)
available_kv_cache_memory = max(available_kv_cache_memory, 0)
# FixMe: this is a patch to fix the issue cause by https://github.com/vllm-project/vllm/commit/de94289a98d7ec52a5ef02719e01a1db8b505170
from vllm.model_executor.layers.linear import \
WEIGHT_LOADER_V2_SUPPORTED
if "UnquantizedLinearMethod" in WEIGHT_LOADER_V2_SUPPORTED:
WEIGHT_LOADER_V2_SUPPORTED.remove("UnquantizedLinearMethod")
def sleep(self, level: int = 1) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
free_bytes_before_sleep = NPUPlatform.mem_get_info()[0]
# Save the buffers before level 2 sleep
if level == 2:
model = self.model_runner.model
self._sleep_saved_buffers = {
name: buffer.cpu().clone()
for name, buffer in model.named_buffers()
}
allocator = CaMemAllocator.get_instance()
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
free_bytes_after_sleep, total = NPUPlatform.mem_get_info()
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
used_bytes = total - free_bytes_after_sleep
assert freed_bytes >= 0, "Memory usage increased after sleeping."
logger.info(
"Available KV cache memory: %.2f GiB (total: %.2f GiB)",
GiB(available_kv_cache_memory),
GiB(self.total_npu_memory),
)
"Sleep mode freed %.2f GiB memory, "
"%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
used_bytes / GiB_bytes)
gc.collect()
return available_kv_cache_memory
def wake_up(self, tags: Optional[list[str]] = None) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
# -----------------------------------------------------------------
# Model lifecycle
# -----------------------------------------------------------------
if is_enable_nz():
raise ValueError(
"FRACTAL_NZ mode is enabled. This may cause model parameter precision issues "
"in the RL scenarios. Please set vllm_npu_ENABLE_NZ=0.")
allocator = CaMemAllocator.get_instance()
allocator.wake_up(tags=tags)
def load_model(self) -> None:
self.model_runner.load_model()
def get_model(self):
return self.model_runner.get_model()
def get_kv_cache_spec(self) -> KVCacheSpec:
return self.model_runner.get_kv_cache_spec()
# Restore the buffers after level 2 sleep
if len(self._sleep_saved_buffers):
model = self.model_runner.model
for name, buffer in model.named_buffers():
if name in self._sleep_saved_buffers:
buffer.data.copy_(self._sleep_saved_buffers[name].data)
self._sleep_saved_buffers = {}
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Store the number of KV cache blocks."""
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
"""Allocate KV caches on NPU."""
self.model_runner.initialize_kv_cache(kv_cache_config)
def _init_device(self):
device = torch.device(f"npu:{self.local_rank}")
NPUPlatform.set_device(device)
NPUPlatform.empty_cache()
self.init_npu_memory = NPUPlatform.mem_get_info()[0]
# Initialize the distributed environment.
self._init_worker_distributed_environment()
# Set random seed.
NPUPlatform.seed_everything(self.model_config.seed)
return device
def compile_or_warm_up_model(self) -> None:
"""Warm up the model (no torch.compile on NPU)."""
self.model_runner.capture_model()
def init_device(self):
device = self._init_device()
# Init ModelRunner here, so that we have access to self.device.
self.model_runner = NPUModelRunner(self.vllm_config, device)
# -----------------------------------------------------------------
# Execution
# -----------------------------------------------------------------
def determine_available_memory(self) -> int:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
NPUPlatform.clear_npu_memory()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
_, total_npu_memory = NPUPlatform.mem_get_info()
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
free_npu_memory, _ = NPUPlatform.mem_get_info()
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
assert self.init_npu_memory > free_npu_memory, (
"Error in memory profiling. "
f"Initial free memory {self.init_npu_memory}, current free memory"
f" {free_npu_memory}. This happens when the NPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
# Get the peak memory allocation recorded by torch
peak_memory = torch_npu.npu.memory_stats()["allocated_bytes.all.peak"]
# TODO: don`t need impl this func after empty_cache in
# Worker.determine_num_available_blocks() unified`
NPUPlatform.empty_cache()
torch_allocated_bytes = torch_npu.npu.memory_stats(
)["allocated_bytes.all.current"]
total_allocated_bytes = torch_npu.npu.mem_get_info(
)[1] - torch_npu.npu.mem_get_info()[0]
non_torch_allocations = total_allocated_bytes - torch_allocated_bytes
if non_torch_allocations > 0:
peak_memory += non_torch_allocations
available_kv_cache_memory = int(
total_npu_memory * self.cache_config.gpu_memory_utilization -
peak_memory)
available_kv_cache_memory = int(max(available_kv_cache_memory, 0))
logger.info(
f"Available memory: {available_kv_cache_memory}, total memory: {total_npu_memory}"
)
return available_kv_cache_memory
def execute_model(
self,
scheduler_output: "SchedulerOutput",
) -> Optional[ModelRunnerOutput]:
output = self.model_runner.execute_model(scheduler_output)
return output if self.is_driver_worker else None
) -> Optional[Union[ModelRunnerOutput, AsyncModelRunnerOutput]]:
# enable msMonitor to monitor the performance of vllm-ascend
if envs_ascend.MSMONITOR_USE_DAEMON:
dp.step()
def execute_dummy_batch(self) -> None:
self.model_runner.execute_dummy_batch()
intermediate_tensors = None
forward_pass = scheduler_output.total_num_scheduled_tokens > 0
if forward_pass and not get_pp_group().is_first_rank:
intermediate_tensors = IntermediateTensors(
get_pp_group().recv_tensor_dict(
all_gather_group=get_tp_group()))
# -----------------------------------------------------------------
# Misc
# -----------------------------------------------------------------
output = self.model_runner.execute_model(scheduler_output,
intermediate_tensors)
if isinstance(output, (ModelRunnerOutput, AsyncModelRunnerOutput)):
return output
def sleep(self, level: int = 1) -> None:
pass
assert isinstance(output, IntermediateTensors)
parallel_config = self.vllm_config.parallel_config
assert parallel_config.distributed_executor_backend != (
"external_launcher") and not get_pp_group().is_last_rank
def wake_up(self, tags: Optional[list[str]] = None) -> None:
pass
get_pp_group().send_tensor_dict(output.tensors,
all_gather_group=get_tp_group())
def get_supported_tasks(self):
return self.model_runner.get_supported_tasks()
kv_connector_output = output.kv_connector_output
if not kv_connector_output:
return None
# In case of PP with kv transfer, we need to pass through the
# kv_connector_output
if (not kv_connector_output.finished_sending
and not kv_connector_output.finished_recving):
return EMPTY_MODEL_RUNNER_OUTPUT
output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
output.kv_connector_output = kv_connector_output
return output
def load_model(self) -> None:
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
assert allocator.get_current_usage() == 0, (
"Sleep mode can only be "
"used for one instance per process.")
context = allocator.use_memory_pool(tag="weights")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.load_model()
def compile_or_warm_up_model(self) -> None:
# Note: need to adapt for graph mode.
self.model_runner.eplb_warmup()
warmup_sizes = (self.vllm_config.compilation_config.compile_sizes
or []).copy()
if not self.model_config.enforce_eager:
warmup_sizes = [
x for x in warmup_sizes if x not in
self.vllm_config.compilation_config.cudagraph_capture_sizes
]
for size in sorted(warmup_sizes, reverse=True):
logger.info("Compile and warming up model for size %d", size)
self.model_runner._dummy_run(size)
if not self.model_config.enforce_eager:
self.model_runner.capture_model()
# Call ATB matmul to warm up; otherwise, the first operation (ReshapeAndCache)
# may cause performance degradation at runtime.
self._warm_up_atb()
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
NPUPlatform.seed_everything(self.model_config.seed)
def _warm_up_atb(self):
x = torch.rand((2, 4), dtype=torch.float16).npu()
weight = torch.rand((2, 4), dtype=torch.float16).npu()
c = torch.rand((4, 4), dtype=torch.float32).npu()
torch_npu._npu_matmul_add_fp32(x, weight, c)
def get_model(self) -> nn.Module:
return self.model_runner.get_model()
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
return self.model_runner.get_kv_cache_spec()
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
"""Allocate NPU KV cache with the specified kv_cache_config."""
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
context = allocator.use_memory_pool(tag="kv_cache")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.initialize_kv_cache(kv_cache_config)
def profile(self, is_start: bool = True):
if self.profiler is None:
raise RuntimeError("Profiler is not enabled.")
if is_start:
self.profiler.start()
else:
self.profiler.stop()
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
@@ -231,17 +371,72 @@ class NPUWorker(WorkerBase):
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> set:
def list_loras(self) -> set[int]:
return self.model_runner.list_loras()
def pin_lora(self, lora_id: int) -> bool:
return self.model_runner.pin_lora(lora_id)
def profile(self, is_start: bool = True) -> None:
pass
def execute_dummy_batch(self) -> None:
self.model_runner._dummy_run(
num_tokens=self.model_runner.decode_token_per_req,
uniform_decode=True)
def take_draft_token_ids(self):
def _init_worker_distributed_environment(self) -> None:
"""Initialize the distributed environment."""
init_distributed_environment(self.parallel_config.world_size,
self.rank, self.distributed_init_method,
self.local_rank, "hccl")
ensure_model_parallel_initialized(
self.parallel_config.tensor_parallel_size,
self.parallel_config.pipeline_parallel_size)
init_ascend_model_parallel(self.parallel_config)
ensure_kv_transfer_initialized(self.vllm_config)
def _init_profiler(self):
# Torch profiler. Enabled and configured through env vars:
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
if envs_vllm.VLLM_TORCH_PROFILER_DIR:
if envs_ascend.MSMONITOR_USE_DAEMON:
raise RuntimeError(
"MSMONITOR_USE_DAEMON and VLLM_TORCH_PROFILER_DIR cannot be both set at the same time."
)
torch_profiler_trace_dir = envs_vllm.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
experimental_config = torch_npu.profiler._ExperimentalConfig(
export_type=torch_npu.profiler.ExportType.Text,
profiler_level=torch_npu.profiler.ProfilerLevel.Level1,
msprof_tx=False,
aic_metrics=torch_npu.profiler.AiCMetrics.AiCoreNone,
l2_cache=False,
op_attr=False,
data_simplification=False,
record_op_args=False,
gc_detect_threshold=None,
)
return torch_npu.profiler.profile(
activities=[
torch_npu.profiler.ProfilerActivity.CPU,
torch_npu.profiler.ProfilerActivity.NPU,
],
with_stack=envs_vllm.VLLM_TORCH_PROFILER_WITH_STACK,
profile_memory=envs_vllm.\
VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
with_modules=False,
experimental_config=experimental_config,
on_trace_ready=torch_npu.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir))
else:
return None
def get_supported_pooling_tasks(self):
return self.model_runner.get_supported_pooling_tasks()
def get_supported_tasks(self) -> "tuple[SupportedTask, ...]":
return self.model_runner.get_supported_tasks()
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
return self.model_runner.take_draft_token_ids()
def check_health(self) -> None:
pass